Please wait a minute...
 
自然资源遥感  2024, Vol. 36 Issue (3): 174-186    DOI: 10.6046/zrzyyg.2023074
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
高分辨率遥感技术在川西毛垭坝地区活动断裂研究中的应用
尹滔(), 宋元宝, 张伟, 袁华云
四川省综合地质调查研究所稀有稀土战略资源评价与利用四川省重点实验室,成都 610081
Application of high-resolution remote sensing technology to research into active faults in the Maoyaba area, western Sichuan Province
YIN Tao(), SONG Yuanbao, ZHANG Wei, YUAN Huayun
Evaluation and Utilization of Strategic Rare Metals and Rare Earth Resource Key Laboratory of Sichuan Institute of Comprehensive Geological Survey, Chengdu 610081, China
全文: PDF(38135 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

高分辨率遥感技术对构造微地貌精细结构的识别能力大大地提高了活动断层调查的效率。该文在系统总结活动断裂遥感影像标志的基础上,综合利用Landsat8和GF-2这2种影像数据,采用宏观地貌到微地貌的遥感解译方法,结合前人研究成果和野外实地考察,对川西毛垭坝地区的活动断裂进行了分析与研究。研究表明,除义敦—理塘断裂带以外,研究区还发育数条呈近EW向具正断裂性质的活动断裂。综合区域地质背景分析认为,在印度板块与欧亚板块的强烈碰撞挤压背景下,青藏高原东南缘地壳物质不断横向挤出,发育了右旋走滑的巴塘断裂和左旋走滑的理塘断裂2组共轭断裂。在2者的共同控制作用下,研究区正处于局部伸展阶段,并发育了近EW向的断裂构造,这些断裂控制了大毛垭坝、小毛垭坝以及北侧的措普盆地的发展与演化。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
尹滔
宋元宝
张伟
袁华云
关键词 高分辨率遥感解译标志理塘断裂活动断裂川滇地区    
Abstract

High-resolution remote sensing technology can greatly enhance the efficiency of investigations into active faults due to its high ability to identify the fine structures of microlandforms. This study presents a systematic summary of the symbols of remote sensing images for active faults. By comprehensively utilizing data from the Landsat8 and GF-2 satellites, as well as previous results and field geological surveys, this study analyzed and examined the active faults in the Maoyaba area of western Sichuan Province through the interpretation of remote sensing images of both macro- and microlandforms. The results show that, besides the Yidun-Litang fault zone, several nearly-W-E-trending normal active faults occur in the study area. Based on this finding, as well as the analysis of the regional geological setting, it can be concluded that crustal materials along the southeastern margin of the Qinghai-Tibet Plateau were continuously squeezed out laterally under the background of the intense collision and compression between the Indian and Eurasian plates, leading to the formation of two conjugate faults: the dextral Batang strike-slip fault and the sinistral Litang strike-slip fault. The joint control of both faults resulted in the local extension of the study area and the formation of nearly-W-E-trending fault structures, which govern the development and evolution of the Damaoyaba Basin, the Xiaomaoyaba Basin, and the Cuopu Basin in the north.

Key wordshigh-resolution remote sensing    interpretation symbol    Litang fault    active fault    Sichuan-Yunnan region
收稿日期: 2023-03-21      出版日期: 2024-09-03
ZTFLH:  TP79  
基金资助:四川省甘孜藏族自治州地方财政资金项目甘孜州1:25万活断层普查项目(513320201900014801)
作者简介: 尹 滔(1983-),男,硕士,高级工程师,主要从事资源与遥感技术应用研究。Email: 406593621@qq.com
引用本文:   
尹滔, 宋元宝, 张伟, 袁华云. 高分辨率遥感技术在川西毛垭坝地区活动断裂研究中的应用[J]. 自然资源遥感, 2024, 36(3): 174-186.
YIN Tao, SONG Yuanbao, ZHANG Wei, YUAN Huayun. Application of high-resolution remote sensing technology to research into active faults in the Maoyaba area, western Sichuan Province. Remote Sensing for Natural Resources, 2024, 36(3): 174-186.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2023074      或      https://www.gtzyyg.com/CN/Y2024/V36/I3/174
Fig.1  川滇地区活动断裂分布图
Fig.2-1  研究区地质背景及活动断裂分布图
Fig.2-2   研究区地质背景及活动断裂分布图
(F1: 章德断裂; F2: 大毛垭坝北缘断裂; F6: 小毛垭坝北缘断裂; F8: 小毛垭坝南缘断裂; F12: 大毛垭坝南缘断裂)
Fig.3  研究区主要活动断裂分布特征及遥感解译标志
Fig.4  典型宏观地貌ETM影像
Fig.5-1  典型微地貌GF-2影像
Fig.5-2  典型微地貌GF-2影像
断层
编号
断层名称 走向 断层性质 倾向 长度/km 遥感解译标志 参考
文献
F1 章德断裂 NW 正断层兼左旋 SW >45 宏观地貌标志: 线性沟谷、线性水体等
微地貌标志: 线性断层陡坎、线性水系边界、串珠状泉眼、冲沟错断等
[21]
F2 大毛垭坝北缘断裂 NW-
NWW
正断层兼左旋 S-
SW
>24 宏观地貌标志: 线性沟谷、断层崖、线性水体、山体错断、断陷盆地等
微地貌标志: 线性断层陡坎、线性水系边界、串珠状泉眼、地震沟槽、反向陡坎、冲沟错断、陡坎错断、冲沟直角弯曲、断头沟、断尾沟等
[12,22]
F3 卓龙沃如马断裂 NW 正断层 SW >8 宏观地貌标志: 线性沟谷、山体错断等
微地貌标志: 线性断层陡坎、线性水系边界、串珠状泉眼、断头沟等
本文
F4 阿加洼弄断裂 NW 正断层 SW >12 宏观地貌标志: 线性沟谷、山体错断等
微地貌标志: 线性断层陡坎、线性水系边界、串珠状泉眼、断头沟等
本文
F5 木查断裂 NW >18 宏观地貌标志: 山体错断、断层崖、线性沟谷等
微地貌标志: 线性水系边界、串珠状泉眼、断头沟、断尾沟等
本文
F6 小毛垭坝北缘断裂 EW 正断层 S >30 宏观地貌标志: 断层崖、线性沟谷、线性水体、山体错断、断陷盆地等
微地貌标志: 线性断层陡坎、线性水系边界、串珠状泉眼、地震沟槽、冲沟错断、陡坎错断、断头沟、断尾沟等
[21]
F7 丫俄断裂 NW >6 宏观地貌标志: 线性沟谷
微地貌标志: 线性断层陡坎
本文
F8 小毛垭坝南缘断裂 EW 正断层 S >15 宏观地貌标志: 线性沟谷、线性水体等
微地貌标志: 线性断层陡坎、线性水系边界、串珠状泉眼、地震沟槽、反向陡坎、冲沟错断、断头沟、断尾沟等
本文
F9 牧业村断裂 NNW >8 宏观地貌标志: 线性沟谷
微地貌标志: 线性断层陡坎、线性水系边界、断头沟等
本文
F10 禾然色巴村断裂 NNE >15 宏观地貌标志: 线性沟谷、线性水体等
微地貌标志: 线性断层陡坎、线性水系边界、串珠状泉眼等
本文
F11 无量河断裂 NWW 正断层兼左旋 SSW >18 宏观地貌标志: 线性沟谷、线性水体等
微地貌标志: 线性断层陡坎、线性水系边界、串珠状泉眼、地震沟槽、冲沟错断、陡坎错断等
[18]
F12 大毛垭坝南缘断裂 EW 正断层 N >40 宏观地貌标志: 线性沟谷、断层崖、线性水体、断陷盆地等
微地貌标志: 线性断层陡坎、线性水系边界、串珠状泉眼、地震沟槽、冲沟错断、陡坎错断、冲沟直角弯曲、断头沟、断尾沟等
[23]
Tab.1  研究区主要活动断裂构造特征及遥感解译标志
Fig.6  毛垭坝盆地北部乱石包远程滑坡
Fig.7  反向陡坎微地貌
Fig.8  活动断裂附近的温泉
[1] Arrowsmith J R, Zielke O. Tectonic geomorphology of the San Andreas fault zone from high resolution topography:An example from the Cholame segment[J]. Geomorphology, 2009, 113(1/2):70-81.
[2] Klinger Y, Etchebes M, Tapponnier P, et al. Characteristic slip for five great earthquakes along the Fuyun fault in China[J]. Nature Geoscience, 2011, 4:389-392.
[3] 张景发, 姜文亮, 田甜, 等. 活动断裂调查中的高分辨率遥感技术应用方法研究[J]. 地震学报, 2016, 38(3):386-398,508.
Zhang J F, Jiang W L, Tian T, et al. High resolution remote sensing application research in active fault surveying[J]. Acta Seismologica Sinica, 2016, 38(3):386-398,508.
[4] 姜文亮, 张景发, 申旭辉, 等. 高分辨率遥感技术在活动断层研究中的应用[J]. 遥感学报, 2018, 22(s1):192-211.
Jiang W L, Zhang J F, Shen X H, et al. Geometric and geomorphic features of active fault structures interpreted from high-resolution remote sensing data[J]. National Remote Sensing Bulletin, 2018, 22(s1):192-211.
[5] 何宏林. 活动断层填图中的航片解译问题[J]. 地震地质, 2011, 33(4):938-950.
He H L. Some problems of aerial photo interpretation in active fault mapping[J]. Seismology and Geology, 2011, 33(4):938-950.
doi: 10.3969/j.issn.0253-4967.2011.04.017
[6] 邓起东. 中国活动构造研究的进展与展望[J]. 地质论评, 2002, 48(2):168-177.
Deng Q D. Advances and overview on researches of active tectonics in China[J]. Geological Review, 2002, 48(2):168-177.
[7] 邓起东, 陈立春, 冉勇康. 活动断裂定量研究与应用[J]. 地学前缘, 2004, 11(4):383-392.
Deng Q D, Chen L C, Ran Y K. Quantitative studies and applications of active tectonics[J]. Earth Science Frontiers, 2004, 11(4):383-392.
[8] 程佳, 徐锡伟, 甘卫军, 等. 青藏高原东南缘地震活动与地壳运动所反映的块体特征及其动力来源[J]. 地球物理学报, 2012, 55(4):1198-1212.
Cheng J, Xu X W, Gan W J, et al. Block model and dynamic implication from the earthquake activities and crustal motion in the southeastern margin of Tibetan Plateau[J]. Chinese Jourmal of Geophysics, 2012, 55(4):1198-1212.
[9] 王阎昭, 王恩宁, 沈正康, 等. 基于GPS资料约束反演川滇地区主要断裂现今活动速率[J]. 中国科学(D辑), 2008, 38(5):582-597.
Wang Y Z, Wang E N, Shen Z K, et al. Inversion of current active rate of main faults in Sichuan-Yunnan area based on GPS data constraints[J]. Science in China (Series D (Earth Sciences)), 2008, 38(5):582-597.
[10] 唐荣昌, 韩渭宾. 四川活动断裂与地震[M]. 北京: 地震出版社, 1993.
Tang R C, Han W B. Active faults and earthquakes in Sichuan Province[M]. Beijing: Seismological Press, 1993.
[11] 徐锡伟, 张培震, 闻学泽, 等. 川西及其邻近地区活动构造基本特征与强震复发模型[J]. 地震地质, 2005, 27(3):446-461.
Xu X W, Zhang P Z, Wen X Z, et al. Features of active tectonics and recurrence behaviors of strong earthquakes in the western Sichuan Province and its adjacent regions[J]. Seismology and Geology, 2005, 27(3):446-461.
[12] 周荣军, 陈国星, 李勇, 等. 四川西部理塘—巴塘地区的活动断裂与1989年巴塘6.7级震群发震构造研究[J]. 地震地质, 2005, 27(1):31-43.
Zhou R J, Chen G X, Li Y, et al. Research on active faults in Litang-Batang Region,western Sichuan Province,and the seismogenic structures of the 1989 Batang M6.7 earthquake swarm[J]. Seismology and Geology, 2005, 27(1):31-43.
[13] 周荣军, 叶友清, 李勇, 等. 理塘断裂带沙湾段的晚第四纪活动性[J]. 第四纪研究, 2007, 27(1):45-53.
Zhou R J, Ye Y Q, Li Y, et al. Late-quaternary activity of the Shawan segment of the Litang faults[J]. Quaternary Sciences, 2007, 27(1):45-53.
[14] 周春景, 吴中海, 张克旗, 等. 川西理塘活动断裂最新同震地表破裂形成时代与震级的重新厘定[J]. 地震地质, 2015, 37(2):455-467.
Zhou C J, Wu Z H, Zhang K Q, et al. New chronological constraint on the co-seismic surface rupture segments associated with the Litang fault[J]. Seismology and Geology, 2015, 37(2):455-467.
doi: 10.3969/j.issn.0253-4967.2015.02.009
[15] 侯增谦, 杨岳清, 曲晓明, 等. 三江地区义敦岛弧造山带演化和成矿系统[J]. 地质学报, 2004, 78(1):109-120.
Hou Z Q, Yang Y Q, Qu X M, et al. Tectonic evolution and mineralization systems of the yidun arc orogen in Sanjiang Region,China[J]. Acta Geologica Sinica, 2004, 78(1):109-120.
[16] 周荣军, 刘韶, 李勇, 等. 理塘断裂大毛垭坝—理塘段地震地表破裂与大地震复发间隔[C]. 中国地球科学联合学术年会论文集, 2016:677-678.
Zhou R J, Liu S, Li Y, et al. Earthquake surface rupture and recurrence interval of large earthquakes in Damaoyaba-Litang section of Litang fault[C]. Proceedings of Annual Meeting of Chinese Geoscience Unioin, 2016:677-678.
[17] 马丹, 吴中海, 李家存, 等. 川西理塘断裂带的空间展布与第四纪左旋走滑活动的遥感影像标志[J]. 地质学报, 2014, 88(8):1417-1435.
Ma D, Wu Z H, Li J C, et al. Geometric distribution and the quaternary activity of Litang active fault zone based on remote sensing[J]. Acta Geologica Sinica, 2014, 88(8):1417-1435.
[18] 赵国华. 川滇块体内理塘断裂活动性及其构造地貌研究[D]. 成都: 成都理工大学, 2014.
Zhao G H. Study on fault activity and tectonic geomorphology of Litang fault within the Chuandian Blocks[D]. Chengdu: Chengdu University of Technology, 2014.
[19] 张远泽. 川滇地块东部主要活动断裂新生代精确构造年代格架及其对青藏高原东缘新生代动力学过程的启示[D]. 武汉: 中国地质大学, 2015.
Zhang Y Z. Tectonic chronology constraint on the main faults bounding the East Sichuan-Yunnan Block and implications for Tibetan Plateau kinetics[D]. Wuhan: China University of Geosciences, 2015.
[20] 郭长宝, 杜宇本, 佟元清, 等. 青藏高原东缘理塘乱石包高速远程滑坡发育特征与形成机理[J]. 地质通报, 2016, 35(8):1332-1345.
Guo C B, Du Y B, Tong Y Q, et al. Huge long-runout landslide characteristics and formation mechanism:A case study of the Luanshibao landslide,Litang County,Tibetan Plateau[J]. Geological Bulletin of China, 2016, 35(8):1332-1345.
[21] Chevalier M L, Leloup P H, Replumaz A, et al. Tectonic-geomorphology of the Litang fault system,SE Tibetan Plateau,and implication for regional seismic hazard[J]. Tectonophysics, 2016, 682:278-292.
[22] 张迪, 吴中海, 李家存, 等. 利用地面激光与地质雷达综合探测活断层浅层三维结构:以川西理塘毛垭坝盆地北缘正断层为例[J]. 地震地质, 2019, 41(2):377-399.
doi: 10.3969/j.issn.0253-4967.2019.02.008
Zhang D, Wu Z H, Li J C, et al. The delineation of three-dimensional shallow geometry of active fault based on TLS and GPR:A case study of a normal fault on the north margin of Maoyaba Basin in Litang,western Sichuan Province[J]. Seismology and Geology, 2019, 41(2):377-399.
[23] 曹云勇, 黄韬, 尹小康, 等. 川藏铁路理塘段毛垭坝盆地不良地质体浅层地震勘查[J]. 地球物理学进展, 2022, 37(2):774.
Cao Y Y, Huang T, Yin X K, et al. Shallow seismic explorations on unfavorable geological bodies in the Maoyaba Basin of the Litang section of the Sichuan-Tibet Railway[J]. Progress in Geophysics, 2022, 37(2):774.
[24] Xu X W, Wen X Z, Yu G H, et al. Average slip rate,earthquake rupturing segmentation and recurrence behavior on the Litang fault zone,western Sichuan Province,China[J]. Science in China Series D Earth Sciences, 2005, 48(8):1183-1196.
[25] 刘亢, 李岩峰, 郭辉文, 等. 1948年川西理塘M7.3地震地表破裂特征及Riedel剪切构造分析[J]. 地质学报, 2021, 95(8):2346-2360.
Liu K, Li Y F, Guo H W, et al. Determination of surface rupture length and analysis of Riedel shear structure of the Litang M7.3 earthquake in west Sichuan in 1948[J]. Acta Geologica Sinica, 2021, 95(8):2346-2360.
[26] 张克旗, 吴中海, 周春景, 等. 川西理塘断裂带奔戈-村戈段古地震事件及其非均匀性活动特征[J]. 地质学报, 2020, 94(4):1295-1303.
Zhang K Q, Wu Z H, Zhou C J, et al. Paleo earthquake events and inhomogeneous activity characteristics in the Benge- Cunge section of the Litang fault zone in the western Sichuan Province[J]. Acta Geologica Sinica, 2020, 94(4):1295-1303.
[27] 任俊杰, 徐锡伟, 康文君, 等. 理塘断裂带毛垭坝断裂全新世古地震历史与大震复发行为[C]// 2020年中国地球科学联合学术年会论文集, 2020:24.
RenJ J, XuX W, KangW J, et al. Holocene paleoearthquake history and large earthquake recurrence behavior of Maoyaba fault in Litang fault zone[C]// Proceedings of Annual Meeting of Chinese Geoscience Unioin, 2020:24.
[28] Holt W E, Ni J F, Wallace T C, et al. The active tectonics of the eastern Himalayan syntaxis and surrounding regions[J]. Journal of Geophysical Research:Solid Earth, 1991, 96(B9):14595-14632.
[29] Wang E, Burchfiel B C. Interpretation of Cenozoic tectonics in the right-lateral accommodation zone between the Ailao Shan shear zone and the eastern Himalayan syntaxis[J]. International Geology Review, 1997, 39:191-219.
[30] 张培震, 王琪, 马宗晋. 青藏高原现今构造变形特征与GPS速度场[J]. 地学前缘, 2002, 9(2):442-450.
Zhang P Z, Wang Q, Ma Z J. GPS velocity field and active crustal deformation in and around the Qinghai-Tibet Plateau[J]. Earth Science Frontiers, 2002, 9(2):442-450.
[31] Socquet A, Pubellier M. Cenozoic deformation in western Yunnan (China-Myanmar border)[J]. Journal of Asian Earth Sciences, 2005, 24(4):495-515.
[32] 吴中海, 龙长兴, 范桃园, 等. 青藏高原东南缘弧形旋扭活动构造体系及其动力学特征与机制[J]. 地质通报, 2015, 34(01):1-31.
Wu Z H, Long C X, Fan T Y, et al. The arc rotational-shear active tectonic system on the southeastern margin of Tibetan Plateau and its dynamic characteristics and mechanism[J]. Geological Bulletin of China, 2015, 34(1):1-31.
[33] Gan W J, Zhang P Z, Shen Z K, et al. Present-day crustal motion within the Tibetan Plateau inferred from GPS measurements[J]. Journal of Geophysical Research:Solid Earth, 2007, 112(B8):B08416.
[34] 张清林. 川西巴塘地区断裂构造变形研究[D]. 成都: 成都理工大学, 2016.
Zhang Q L. Study on deformation of faults in Batang region in Western Sichuan[D]. Chengdu: Chengdu University of Technology, 2016.
[1] 刘亚林. 基于真实感场景影像的天陇铁路勘察遥感解译与分析[J]. 自然资源遥感, 2022, 34(3): 227-234.
[2] 薛白, 王懿哲, 刘书含, 岳明宇, 王艺颖, 赵世湖. 基于孪生注意力网络的高分辨率遥感影像变化检测[J]. 自然资源遥感, 2022, 34(1): 61-66.
[3] 胡苏李扬, 李辉, 顾延生, 黄咸雨, 张志麒, 汪迎春. 基于高分辨率遥感影像的神农架大九湖湿地土地利用类型变化及其驱动力分析——来自长时间尺度多源遥感信息的约束[J]. 国土资源遥感, 2021, 33(1): 221-230.
[4] 卫虹宇, 赵银娣, 董霁红. 基于改进RetinaNet的冷却塔目标检测[J]. 国土资源遥感, 2020, 32(4): 68-73.
[5] 吴同, 彭玲, 胡媛. 基于SU-RetinaNet的高分辨率遥感影像非正规垃圾堆检测[J]. 国土资源遥感, 2020, 32(3): 90-97.
[6] 张玲, 刘斌, 葛大庆, 郭小方. 基于多源SAR数据唐山城区活动断裂微小差异形变探测[J]. 国土资源遥感, 2020, 32(3): 114-120.
[7] 康晋洁, 戚浩平, 杨清华, 陈华. 道路通行障碍物遥感检测与通过性评价[J]. 国土资源遥感, 2020, 32(2): 94-102.
[8] 李想, 杨灿坤, 周春平, 李小娟, 张可. 高分辨率光学卫星图像目标运动信息提取研究综述[J]. 国土资源遥感, 2019, 31(3): 1-9.
[9] 谢奇芳, 姚国清, 张猛. 基于Faster R-CNN的高分辨率图像目标检测技术[J]. 国土资源遥感, 2019, 31(2): 38-43.
[10] 谢小平, 白毛伟, 陈芝聪, 柳伟波, 席书娜. 龙门山断裂带北东段活动断裂的遥感影像解译及构造活动性分析[J]. 国土资源遥感, 2019, 31(1): 237-246.
[11] 李微, 刘伟男, 贾越平, 刘洪洋, 汤勇. 基于面向对象法艾比湖卤虫信息提取[J]. 国土资源遥感, 2018, 30(4): 176-181.
[12] 范玉海, 王辉, 杨兴科, 彭齐鸣, 秦绪文, 杨金中, 张少鹏, 谭富荣. 基于高分辨率遥感数据的稀有金属矿化带勘查[J]. 国土资源遥感, 2018, 30(1): 128-134.
[13] 张策, 揭文辉, 付丽华, 魏本赞. 新疆新源县滑坡灾害遥感影像特征及分布规律[J]. 国土资源遥感, 2017, 29(s1): 81-84.
[14] 岳梦雪, 秦昆, 张恩兵, 张晔, 曾诚. 基于数据场和密度聚类的高分辨率影像居民区提取[J]. 国土资源遥感, 2017, 29(3): 92-97.
[15] 张志军, 潘思远, 李明, 王雁鹤, 徐延峰. 北巴颜喀拉山地区岩性遥感解译标志建立[J]. 国土资源遥感, 2017, 29(1): 199-207.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发