Please wait a minute...
 
自然资源遥感  2024, Vol. 36 Issue (4): 55-61    DOI: 10.6046/zrzyyg.2023182
  矿山生态环境遥感监测专栏 本期目录 | 过刊浏览 | 高级检索 |
基于分层次多尺度分割的缅甸达贡山镍矿矿区信息提取与动态变化监测
陈理(), 张仙, 李伟, 李瑜(), 陈昊旻
中国自然资源航空物探遥感中心,北京 100083
Hierarchical multi-scale segmentation-based information extraction and dynamic monitoring for the Tagaung Taung nickel deposit, Myanmar
CHEN Li(), ZHANG Xian, LI Wei, LI Yu(), CHEN Haomin
China Areo Geophysical Survey and Remote Sensing Center for Natural Resources, Beijing 100083, China
全文: PDF(3402 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

高空间分辨率遥感影像已被广泛应用于矿区分类。针对典型露天红土风化壳型镍矿矿区信息提取及其动态变化监测的研究相对较少等问题,该文以缅甸著名的达贡山镍矿为研究区,基于Pleiades和GF-2高空间分辨率遥感影像数据,首先采用分层次多尺度分割的面向对象分类方法,提取矿区地物信息; 然后,对达贡山镍矿的动态变化情况进行分析; 最后,从定性和定量2个方面对分类结果进行精度评价。研究结果表明,基于分层次多尺度分割技术的分类识别效果较好,Pleiades 和 GF-2 影像的整体分类精度分别为 94.24% 和 89.02%,Kappa系数分别为0.889和0.816,该方法适用于露天红土镍矿的矿区信息提取。通过动态变化分析,2015—2017年达贡山镍矿开采规模不断扩大,开采速度较快,具有良好的资源开发潜力和广阔的开发前景。研究结果可为缅甸达贡山镍矿区的动态变化监测提供技术支持。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈理
张仙
李伟
李瑜
陈昊旻
关键词 分层多尺度分割信息提取动态变化监测镍矿    
Abstract

High-resolution remote sensing images have been widely applied to classification of ore deposits. However, there is a lack of studies on the information extraction and dynamic monitoring of open-pit lateritic nickel deposits. Using high-resolution remote sensing images from the Pleiades and GF-2 satellites, this study investigated the famous open-pit Tagaung Taung nickel deposit in Myanmar. First, information about surface features was extracted using object-oriented classification based on hierarchical multi-scale segmentation. Then, the dynamic changes in the nickel deposit were analyzed. Finally, qualitative and quantitative assessments of the classification accuracy were carried out. The results indicate that the hierarchical multi-scale segmentation technology exhibited encouraging classification and identification effects, with overall classification accuracy of 94.24% and 89.02% and the Kappa coefficients of 0.889 and 0.816, respectively for images from the Pleiades and GF-2 satellites. Therefore, the proposed method is suitable for the information extraction of open-pit lateritic nickel deposits. The dynamic change analysis reveals that the Tagaung Taung nickel deposit experienced continuous expansion of mining at high mining speeds from 2015 to 2017. It can be inferred that this deposit has great potential and broad prospects for resource development. The results of this study can provide technical support for the dynamic monitoring of the Tagaung Taung nickel deposit in Myanmar.

Key wordshierarchical multi-scale segmentation    information extraction    dynamic monitoring for changes    nickel deposit
收稿日期: 2023-06-25      出版日期: 2024-12-23
ZTFLH:  TP79  
基金资助:中国地质调查局地质调查项目“‘一带一路’资源环境卫星遥感解译与应用”(DD20160117);自然资源部航空地球物理与遥感地质重点实验室航遥青年创新基金课题“面向对象的红土型镍矿多要素识别提取与矿业活动变化定量分析研究”(2020YFL32)
通讯作者: 李瑜(1982-),女,正高级工程师,主要从事遥感技术应用和自然资源遥感期刊编辑工作。Email: gtzyygliyu@163.com
作者简介: 陈理(1986-),女,博士,高级工程师,主要从事遥感地质应用研究。Email: chenlixyz@163.com
引用本文:   
陈理, 张仙, 李伟, 李瑜, 陈昊旻. 基于分层次多尺度分割的缅甸达贡山镍矿矿区信息提取与动态变化监测[J]. 自然资源遥感, 2024, 36(4): 55-61.
CHEN Li, ZHANG Xian, LI Wei, LI Yu, CHEN Haomin. Hierarchical multi-scale segmentation-based information extraction and dynamic monitoring for the Tagaung Taung nickel deposit, Myanmar. Remote Sensing for Natural Resources, 2024, 36(4): 55-61.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2023182      或      https://www.gtzyyg.com/CN/Y2024/V36/I4/55
Fig.1  缅甸达贡山矿区地质简图 [20]
参数 Pleiades GF-2
光谱范围/nm 全色 480~830 450~900
多光谱 430~550 450~520
490~610 520~590
600~720 630~690
750~950 770~890
空间分辨率/m 全色 0.5 1
多光谱 2 4
幅宽/km 20 45(2台相机组合)
获取时间 2015-11-07 2017-01-25
Tab.1  Pleiades和GF-2卫星影像参数
Fig.2  研究区Pleiades真彩色合成影像和验证样本
Fig.3  基于分层次多尺度分割的矿区信息提取流程
Fig.4  基于分层次多尺度分割的矿区信息提取结果
数据 精度 类别
水体 植被 道路 裸土 矿区 建筑物 尾矿坝
Pleiades 生产者精度/% 100.00 96.52 57.04 87.89 94.78 100.00 100.00
用户精度/% 100.00 98.07 82.78 69.53 100.00 100.00 100.00
总体精度: 94.24%,Kappa系数: 0.889
GF-2 生产者精度/% 100.00 100.00 59.86 67.83 88.87 89.02 100.00
用户精度/% 100.00 86.72 76.78 90.36 100.00 98.58 100.00
总体精度: 89.02%,Kappa 系数: 0.816
Tab.2  分类结果精度评价
Fig.5  2015—2017年达贡山镍矿矿区动态变化
(底图为GF-2真彩合成影像)
年份 矿区露天采场面积 尾矿坝面积
2015年 898 792.99 249 650.28
2017年 1 056 184.54 330 737.10
Tab.3  2015—2017年矿区典型地物面积统计
[1] Upadhyay P, Ghosh S K, Kumar A, et al. Effect on specific crop mapping using WorldView-2 multispectral add-on bands:Soft classification approach[J]. Journal of Applied Remote Sensing, 2012, 6(1):063524.
[2] Mutanga O, Adam E, Cho M A. High density biomass estimation for wetland vegetation using WorldView-2 imagery and random forest regression algorithm[J]. International Journal of Applied Earth Observation and Geoinformation, 2012, 18:399-406.
[3] Pacifici F, Chini M, Emery W J. A neural network approach using multi-scale textural metrics from very high-resolution panchromatic imagery for urban land-use classification[J]. Remote Sensing of Environment, 2009, 113(6):1276-1292.
[4] Longbotham N, Chaapel C, Bleiler L, et al. Very high resolution multiangle urban classification analysis[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 50(4):1155-1170.
[5] 高俊华, 邹联学, 龙欢, 等. 基于遥感动态监测的吉林省矿山地质环境及生态修复变化特征分析[J]. 自然资源遥感, 2022, 34(3):240-248.doi:10.6046/zrzyyg.2021278.
Gao J H, Zou L X, Long H, et al. Analysis on characteristics of mine geological environment and ecological restoration changes in Jilin Province based on dynamic remote sensing monitoring[J]. Remote Sensing for Natural Resources, 2022, 34(3):240-248.doi:10.6046/zrzyyg.2021278.
[6] 汪洁, 刘小杨, 杨金中, 等. 基于国产高空间分辨率卫星数据的浙江省矿山环境恢复治理典型模式分析[J]. 国土资源遥感, 2020, 32(3):216-221.doi:10.6046/gtzyyg.2020.03.28.
Wang J, Liu X Y, Yang J Z, et al. Typical model analysis of mine geological environment restoration and management in Zhejiang Province based on domestic high-resolution satellite data[J]. Remote Sensing for Land and Resources, 2020, 32(3):216-221.doi:10.6046/gtzyyg.2020.03.28.
[7] 王海庆, 郝建亭, 李丽, 等. 西藏各行政区矿产开采强度遥感分析[J]. 国土资源遥感, 2020, 32(1):115-119.doi:10.6046/gtzyyg.2020.01.16.
Wang H Q, Hao J T, Li L, et al. Mining intensity analysis of each administrative region in Tibet based on remote sensing[J]. Remote Sensing for Land and Resources, 2020, 32(1):115-119.doi:10.6046/gtzyyg.2020.01.16.
[8] 赵玉灵. 基于层次分析法的矿山环境评价方法研究——以海南岛为例[J]. 国土资源遥感, 2020, 32(1):148-153.doi:10.6046/gtzyyg.2020.01.20.
Zhao Y L. Study and application of analytic hierarchy process of mine geological environment:A case study in Hainan Island[J]. Remote Sensing for Land and Resources, 2020, 32(1):148-153.doi:10.6046/gtzyyg.2020.01.20.
[9] 徐振恒, 潘蔚, 张元涛. 高分一号遥感数据在南方热液铀成矿区岩性识别中的应用研究[J]. 铀矿地质, 2021, 37(2):227-234.
Xu Z H, Pan W, Zhang Y T. Application of GF1 image in lithology recognition of hydrothermal uranium metallogenic area,South China[J]. Uranium Geology, 2021, 37(2):227-234.
[10] 范莹琳, 娄德波, 张长青, 等. 基于面向对象的铁尾矿信息提取技术研究——以迁西地区北京二号遥感影像为例[J]. 自然资源遥感, 2021, 33(4):153-161.doi:10.6046/zrzyyg.2021027.
Fan Y L, Lou D B, Zhang C Q, et al. Information extraction technolo-gies of iron mine tailings based on object-oriented classification:A case study of Beijing-2 remote sensing images of the Qianxi Area,Hebei Province[J]. Remote Sensing for Natural Resources, 2021, 33(4):153-161.doi:10.6046/zrzyyg.2021027.
[11] 蔡祥, 李琦, 罗言, 等. 面向对象结合深度学习方法的矿区地物提取[J]. 国土资源遥感, 2021, 33(1):63-71.doi:10.6046/gtzyyg.2020111.
Cai X, Li Q, Luo Y, et al. Surface features extraction of mining area image based on object-oriented and deep-learning method[J]. Remote Sensing for Land and Resources, 2021, 33(1):63-71.doi:10.6046/gtzyyg.2020111.
[12] 董佰山, 杨耘, 崔琴芳. 基于高分二号的矿区土地利用精细分类与分析[J]. 甘肃科学学报, 2019, 31(1):81-85.
Dong B S, Yang Y, Cui Q F. Detailed classification and analysis based on separator No.2 land use in mining area[J]. Journal of Gansu Sciences, 2019, 31(1):81-85.
[13] 李祥强, 倪斌, 彭欣. 基于OLI和GF-2数据的锰矿化信息提取分析与对比——以新疆西昆仑玛尔坎苏锰矿带为例[J]. 地质与勘探, 2020, 56(5):1040-1049.
Li X Q, Ni B, Peng X. Analysis and comparison of extracting manganese mineralization information from OLI and GF-2 data:An example of the malkansu manganese mine in West Kunlun,Xinjiang[J]. Geology and Exploration, 2020, 56(5):1040-1049.
[14] 李恒凯, 瓮旭阳. 基于GF-2影像的离子吸附型稀土矿区地表覆盖分层分类提取方法研究[J]. 稀土, 2022, 43(2):108-119.
Li H K, Weng X Y. Study on stratified and classified extraction method of ion-adsorption rare earth mining area surface cover based on GF-2 image[J]. Chinese Rare Earths, 2022, 43(2):108-119.
[15] 黄慧萍, 吴炳方. 地物提取的多尺度特征遥感应用分析[J]. 遥感技术与应用, 2003, 18(5):276-281.
Huang H P, Wu B F. Analysis of the mutli-scale characteristics with objects extraction[J]. Remote Sensing Technology and Application, 2003, 18(5):276-281.
[16] 党涛, 宋起, 刘勇, 等. 基于多层次分割分类模型及其特征空间优化的建筑物提取方法[J]. 国土资源遥感, 2019, 31(3):111-122.doi:10.6046/gtzyyg.2019.03.15.
Dang T, Song Q, Liu Y, et al. Extraction of buildings in remote sensing imagery based on multi-level segmentation and classification hierarchical model and feature space optimization[J]. Remote Sensing for Land and Resources, 2019, 31(3):111-122.doi:10.6046/gtzyyg.2019.03.15.
[17] 张道红, 孙媛. 缅甸达贡山含镍风化壳地质地球化学特征及成矿作用[J]. 桂林理工大学学报, 2010, 30(3):332-338.
Zhang D H, Sun Y. Geololgical-geochemistry characteristics and minerogenesis of nickel-bearing weathering crust in Taguang Taung,Myanmar[J]. Journal of Guilin University of Technology, 2010, 30(3):332-338.
[18] 潘瀚, 周守余, 李学彪, 等. 缅甸太公当地区那田塘镍铬多金属矿化探异常特征与找矿潜力[J]. 世界有色金属, 2018(8):118-120.
Pan H, Zhou S Y, Li X B, et al. The geochemical anomaly characteristics and prospecting potential of the Na ta Lin Taung nickel-chromium polymetallic mineral in Taguang Taung,Myanmar[J]. World Nonferrous Metals, 2018(8):118-120.
[19] 左黎阳. 缅甸达贡山红土型镍矿H区生产勘探、开发利用以及深部找矿研究[J]. 中国资源综合利用, 2020, 38(3):79-81.
Zuo L Y. Study on production exploration,development and utilization and deep prospecting in H district of Dagongshan nickel mine in Myanmar[J]. China Resources Comprehensive Utilization, 2020, 38(3):79-81.
[20] 程迁群, 罗太旭. 缅甸达贡山风化壳型硅酸镍矿床[J]. 云南地质, 2009, 28(4):420-424.
Cheng Q Q, Luo T X. Tagaung Taung Ni silicate deposit of weathering crust type,Myanmar[J]. Yunnan Geology, 2009, 28(4):420-424.
[21] 周守余, 杨明德, 颜自给, 等. 缅甸曼德勒省太公当矿区镍铬矿地质特征[J]. 矿床地质, 2014, 33(s1):1149-1150.
Zhou S Y, Yang M D, Yan Z J, et al. Geological characteristics of Tagaung Taung Nichrome Mine in Mandalay,Myanmar[J]. Mineral Deposits, 2014, 33(s1):1149-1150.
[22] 陈政融, 刘世增, 刘淑娟, 等. 基于Pleiades-1高分辨率卫星影像的干旱沙区遥感影像分类——以甘肃民勤青土湖为例[J]. 中国农学通报, 2015, 31(20):126-130.
doi: 10.11924/j.issn.1000-6850.casb15040132
Chen Z R, Liu S Z, Liu S J, et al. Classification of arid sand remote sensing image based on Pleiades-1 high resolution satellite image:A case study of Qingtu Lake in Minqin County of Gansu Province[J]. Chinese Agricultural Science Bulletin, 2015, 31(20):126-130.
[23] 柳明星, 刘建红, 马敏飞, 等. 基于GF-2 PMS影像和随机森林的甘肃临夏花椒树种植监测[J]. 自然资源遥感, 2022, 34(1):218-229.doi:10.6046/zrzyyg.2021112.
Liu M X, Liu J H, Ma M F, et al. Monitoring of Zanthoxylum bungeanum Maxim planting using GF-2 PMS images and the random forest algorithm:A case study of Linxia,Gansu Province[J]. Remote Sensing for Natural Resources, 2022, 34(1):218-229.doi:10.6046/zrzyyg.2021112.
[24] Chen L, Qin Q M, Chen C, et al. Remote sensing information of mineralizing alteration extraction methods[C]// 2012 IEEE International Geoscience and Remote Sensing Symposium.Munich,Germany.IEEE, 2012:5947-5950.
[25] Chen L, Qin Q M, Bai Y B, et al. Integrating remote sensing and super-low frequency electromagnetic technology in exploration of buried faults[C]// 2013 IEEE International Geoscience and Remote Sensing Symposium - IGARSS.Melbourne,VIC,Australia.IEEE, 2013:811-814.
[26] Zhen G W, Chen L, Chen C, et al. Alteration anomaly information extraction using hyperspectral remote sensing in coalbed methane enrichment[C]// 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).Beijing,China.IEEE, 2016:5394-5397.
[27] 李靖霞, 文金花. 基于多尺度分割技术的高分辨率影像信息提取方法分析[J]. 防护林科技, 2021(1):42-45.
Li J X, Wen J H. Analysis of high-resolution image information extraction method based on multi-scale segmentation technology[J]. Protection Forest Science and Technology, 2021(1):42-45.
[28] 陈俊任, 周晓华, 卢兴. 基于分层次多尺度分割的面向对象地物分类方法[J]. 江西测绘, 2018(4):26-29.
Chen J R, Zhou X H, Lu X. Object-oriented classification method for surface features based on hierarchical and multi-scale segmentation[J]. Jiangxi Cehui, 2018(4):26-29.
[29] 苏腾飞. 基于边界信息的多尺度遥感影像分割质量非监督评价方法[J]. 自然资源遥感, 2023, 35(1):35-40.doi:10.6046/zrzyyg.2021444.
Su T F. A unsupervised quality valuation method for multi-scale remote sensing image segmentation based on boundary information[J]. Remote Sensing for Natural Resources, 2023, 35(1):35-40.doi:10.6046/zrzyyg.2021444.
[30] 刘小丹, 于宁, 邱红圆. 基于谱直方图的遥感图像分层次多尺度植被分割[J]. 国土资源遥感, 2017, 29(2):82-89.doi:10.6046/gtzyyg.2017.02.12.
Liu X D, Yu N, Qiu H Y. Hierarchical muti-scale vegetation segmentation of remote sensing image based on spectrum histogram[J]. Remote Sensing for Land and Resources, 2017, 29(2):82-89.doi:10.6046/gtzyyg.2017.02.12.
[31] 薛昱晟. 面向地理国情地表覆盖变化检测的多尺度分割方法研究[J]. 测绘与空间地理信息, 2021, 44(1):47-51.
Xue Y S. Multi-scale segmentation method regarding land cover change detection of national geographic conditions monitoring[J]. Geomatics & Spatial Information Technology, 2021, 44(1):47-51.
[32] Chen L, Li W, Zhang X, et al. Application of object-oriented classification with hierarchical multi-scale segmentation for information extraction in nonoc nickel mine,the Philippines[C]// 2018 Fifth International Workshop on Earth Observation and Remote Sensing Applications (EORSA).Xi’an,China.IEEE, 2018:1-3.
[1] 秦其明, 吴自华, 叶昕, 王楠, 韩谷怀. 煤层气富集区遥感勘查研究进展与展望[J]. 自然资源遥感, 2024, 36(3): 1-12.
[2] 胡锋, 李雪, 左晋, 宋善海, 唐红祥, 谷晓平. 贵州500亩以上坝区遥感识别与空间分布特征研究[J]. 自然资源遥感, 2023, 35(2): 287-294.
[3] 查东平, 蔡海生, 张学玲, 何庆港. 基于多时相Sentinel-1水稻种植范围提取[J]. 自然资源遥感, 2022, 34(3): 184-195.
[4] 黄佩, 普军伟, 赵巧巧, 李忠杰, 宋浩昆, 赵筱青. 植被遥感信息提取方法研究进展及发展趋势[J]. 自然资源遥感, 2022, 34(2): 10-19.
[5] 魏英娟, 刘欢. 北衙金矿床遥感矿化蚀变信息提取及找矿预测[J]. 自然资源遥感, 2021, 33(3): 156-163.
[6] 牟晓莉, 李贺, 黄翀, 刘庆生, 刘高焕. Google Earth Engine在土地覆被遥感信息提取中的研究进展[J]. 国土资源遥感, 2021, 33(2): 1-10.
[7] 夏炎, 黄亮, 陈朋弟. 模糊超像素分割算法的无人机影像烟株精细提取[J]. 国土资源遥感, 2021, 33(1): 115-122.
[8] 王琳, 谢洪波, 文广超, 杨运航. 基于Landsat8的含蓝藻湖泊水体信息提取方法研究[J]. 国土资源遥感, 2020, 32(4): 130-136.
[9] 刘畅, 杨康, 程亮, 李满春, 郭紫燕. Landsat8不透水面遥感信息提取方法对比[J]. 国土资源遥感, 2019, 31(3): 148-156.
[10] 尹展, 张利军, 段建良, 张沛. 南方植被区强迫不变植被抑制技术改进与应用[J]. 国土资源遥感, 2019, 31(2): 82-88.
[11] 王月如, 韩鹏鹏, 关舒婧, 韩宇, 易琳, 周廷刚, 陈劲松. 基于Landsat8 OLI数据的富贵竹种植区域信息提取[J]. 国土资源遥感, 2019, 31(1): 133-140.
[12] 王勇, 张寅玲, 尤淑撑, 王忠武, 魏海, 李洋. 资源一号02C卫星数据在土地整理项目验收核查中的应用[J]. 国土资源遥感, 2018, 30(1): 144-149.
[13] 薛庆, 吴蔚, 李名松, 董双发, 章新益, 石海港. 高分一号数据在矿山遥感监测中的应用[J]. 国土资源遥感, 2017, 29(s1): 67-72.
[14] 王瑾杰, 丁建丽, 张成, 陈文倩. 基于GF-1卫星影像的改进SWI水体提取方法[J]. 国土资源遥感, 2017, 29(1): 29-35.
[15] 杨晓楠, 徐韵, 田玉刚. 一种用于城市信息提取的改进居民地指数[J]. 国土资源遥感, 2016, 28(4): 127-134.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发