Please wait a minute...
 
国土资源遥感  2019, Vol. 31 Issue (3): 148-156    DOI: 10.6046/gtzyyg.2019.03.19
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
Landsat8不透水面遥感信息提取方法对比
刘畅1, 杨康1,2,3(), 程亮1,2,3, 李满春1,2,3, 郭紫燕1
1. 南京大学地理与海洋科学学院,南京 210023
2. 江苏省地理信息技术重点实验室,南京 210023
3. 中国南海研究协同创新中心,南京 210023
Comparison of Landsat8 impervious surface extraction methods
Chang LIU1, Kang YANG1,2,3(), Liang CHENG1,2,3, Manchun LI1,2,3, Ziyan GUO1
1. School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing 210023,China
2. Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, Nanjing 210023, China
3. Collaborative Innovation Center for the South Sea Studies, Nanjing 210023, China
全文: PDF(6313 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

不透水面是重要的地表覆盖类型,利用卫星遥感影像准确提取不透水面信息对于掌握地表覆盖变化具有重要意义。现有研究已提出了多种不透水面遥感信息提取指数,但目前尚缺乏对这些不透水面指数的系统对比分析。利用Landsat8卫星遥感影像,测试了目前8种主要不透水面指数的提取精度。结果表明,在现有不透水面指数中,垂直不透水层指数能够有效增强不透水面信息,不透水面提取精度最高(89.6%),其次是比值居民地指数和生物物理组分指数(87.5%和87.4%),城市指数与新建筑指数提取精度再次之(82.9%和80.0%),归一化差值不透水面指数、归一化建筑指数和基于指数的建筑指数未能有效增强不透水面信息,提取精度较低(<75.0%)。此外,这8种不透水面指数都未能有效解决不透水面与大片裸地光谱混淆的问题,在裸地广泛分布的区域难以准确提取不透水面,平均提取精度仅为71.0%,影响了不透水面指数的大区域应用。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘畅
杨康
程亮
李满春
郭紫燕
关键词 不透水面遥感信息提取不透水面指数土地覆盖Landsat8    
Abstract

Impervious surface is an important land cover type. Extracting impervious surface from satellite images is crucial for land use and land cover change (LUCC) studies. Although several indexes have been proposed to detect impervious surface, there is a lack of systematic comparative analysis of these indexes. To address this problem, the authors estimated the performance of eight state-of-the-art impervious surface indexes using Landsat8 satellite images. The experimental results show that perpendicular impervious index (PII) performs best, yielding the highest detection accuracy of 89.6%. The accuracies of ratio resident-area index (RRI) and biophysical composition index (BCI) are slightly lower than the accuracy of PII, which are 87.5% and 87.4%, respectively. The accuracies of urban index (UI) and new built-up index (NBI) are 82.9% and 80.0%, respectively. Normalized difference impervious surface index (NDISI), normalized difference built-up index (NDBI), and index-based built-up index (IBI) fail to enhance the spectral characteristics of impervious surface from complex image background, thereby yielding the lowest accuracy (<75.0%). Importantly, the eight impervious surface indexes fail to distinguish the spectral characteristics of impervious surface from large bare land areas and the average detection accuracy is only 71.0%, hindering their applications in bare-land-rich areas.

Key wordsimpervious surface    remote sensing information extraction    impervious surface index    land cover    Landsat8
收稿日期: 2018-06-28      出版日期: 2019-08-30
:  TP79  
基金资助:国家重点研发计划项目子课题“‘一路’重点区域国土安全监测系统集成与应急示范”资助(2017YFB0504205)
通讯作者: 杨康
作者简介: 刘 畅(1995-),女,硕士研究生,研究方向为遥感影像处理与分析。Email: liuchangnju@126.com.。
引用本文:   
刘畅, 杨康, 程亮, 李满春, 郭紫燕. Landsat8不透水面遥感信息提取方法对比[J]. 国土资源遥感, 2019, 31(3): 148-156.
Chang LIU, Kang YANG, Liang CHENG, Manchun LI, Ziyan GUO. Comparison of Landsat8 impervious surface extraction methods. Remote Sensing for Land & Resources, 2019, 31(3): 148-156.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2019.03.19      或      https://www.gtzyyg.com/CN/Y2019/V31/I3/148
Fig.1  Landsat8卫星遥感影像不同地类光谱特征
名称 公 式 使用数据 实验区 是否进行大气校正
NDISI[12] NDISI=TIR-(MNDWI\VISIBLE+NIR+SWIR1)/3TIR+(MNDWI\VISIBLE+NIR+SWIR1)/3 Landsat7,
ASTER
福州、厦门
BCI[18] BCI=(TC1+TC3)/2-TC2(TC1+TC3)/2+TC2 Landsat7,
IKONOS,
MODIS
美国威斯康星
UI[19] UI=SWIR2-NIRSWIR2+NIR Landsat7 斯里兰卡科伦坡 未提及
IBI[20] IBI=NDBI-(MNDWI+SAVI)/2NDBI+(MNDWI+SAVI)/2 Landsat7 福州
NDBI[21] NDBI=SWIR1-NIRSWIR1+NIR Landsat5 无锡 未提及
NBI[22] NBI=RED×SWIR1NIR Landsat5/7 常州 未提及
PII[23] PII=mBLUE+nNIR+C Landsat8 武汉、北京
RRI[24] RRI=BLUENIR Landsat5 西安、咸阳
Tab.1  不透水面指数汇总
Fig.2  实验区分布及Landsat8影像
Fig.3  不透水面指数的ROC曲线
不透水面指数 AUC 不透水面指数 AUC
实验区1 实验区2 实验区1 实验区2
PII 0.895 0.839 UI 0.850 0.812
BCI 0.893 0.837 IBI 0.787 0.769
RRI 0.885 0.835 NDISI 0.731 0.765
NDBI 0.777 0.760 NBI 0.849 0.812
Tab.2  不透水面指数在实验区1和实验区2的AUC
Fig.4  实验区1中最优不透水面提取效果
Fig.5  实验区2中最优不透水面提取效果
不透水面指数 实验区1 实验区2 不透水面指数 实验区1 实验区2
OA TPR FPR OA TPR FPR OA TPR FPR OA TPR FPR
PII 89.6 81.2 9.5 77.3 77.1 22.7 UI 82.9 77.7 16.5 70.1 80.2 30.4
BCI 87.4 83.7 12.2 77.4 77.3 22.6 IBI 72.4 77.7 28.2 63.5 79.6 37.2
RRI 87.5 82.1 12.0 78.3 75.1 21.5 NDISI 74.6 65.2 24.4 69.4 72.8 30.8
NDBI 73.4 74.3 26.7 59.7 82.1 41.3 NBI 80.0 82.0 20.3 72.3 78.9 28.0
Tab.3  最优阈值不透水面指数的精度评价结果
Tab.4  
[1] Arnold C L, Gibbons C J . Impervious surface coverage:The emergence of a key environmental indicator[J]. Journal of the American Planning Association, 1996,62(2):243-258.
[2] Zhang L, Weng Q, Shao Z . An evaluation of monthly impervious surface dyna-mics by fusing Landsat and MODIS time series in the Pearl River Delta,China,from 2000 to 2015[J]. Remote Sensing of Environment, 2017,201:99-114.
[3] Slonecker E T, Jennings D B, Garofalo D . Remote sensing of impervious surfaces:A review[J]. Remote Sensing Reviews, 2001,20(3):227-255.
[4] Song X P, Sexton J O, Huang C , et al. Characterizing the magnitude,timing and duration of urban growth from time series of Landsat-based estimates of impervious cover[J]. Remote Sensing of Environment, 2016,175:1-13.
[5] Weng Q . Remote sensing of impervious surfaces in the urban areas:Requirements,methods,and trends[J]. Remote Sensing of Environment, 2012,117:34-49.
[6] Dams J, Dujardin J, Reggers R , et al. Mapping impervious surface change from remote sensing for hydrological modeling[J]. Journal of Hydrology, 2013,485:84-95.
[7] Sofia G, Roder G, Dalla F , et al. Flood dynamics in urbanised landscapes:100 years of climate and humans’ interaction[J]. Scientific Reports, 2017,7:40527.
[8] Mathew A, Khandelwal S, Kaul N . Spatial and temporal variations of urban heat island effect and the effect of percentage impervious surface area and elevation on land surface temperature:Study of Chandigarh City,India[J]. Sustainable Cities and Society, 2016,26:264-277.
[9] Xiao R, Ouyang Z, Zheng H , et al. Spatial pattern of impervious surfaces and their impacts on land surface temperature in Beijing,China[J]. Journal of Environmental Sciences, 2007,19(2):250-256.
[10] 徐涵秋 . 城市不透水面与相关城市生态要素关系的定量分析[J]. 生态学报, 2009,29(5):2456-2462.
doi: 10.3321/j.issn:1000-0933.2009.05.032
Xu H Q . Quantitative analysis on the relationship of urban impervious surface with other components of the urban ecosystem[J]. Acta Ecologica Sinica, 2009,29(5):2456-2462.
[11] Liu C, Shao Z, Chen M , et al. MNDISI:A multi-source composition index for impervious surface area estimation at the individual city scale[J]. Remote Sensing Letters, 2013,4(8):803-812.
[12] 徐涵秋 . 一种快速提取不透水面的新型遥感指数[J]. 武汉大学学报(信息科学版), 2008,33(11):1150-1153.
Xu H Q . A new remote sensing index for fastly extracting impervious surface information[J]. Geomatics and Information Science of Wuhan University, 2008,33(11):1150-1153.
[13] Yang L, Huang C, Homer C G , et al. An approach for mapping large-area impervious surfaces:Synergistic use of Landsat-7 ETM+ and high spatial resolution imagery[J]. Canadian Journal of Remote Sensing, 2003,29(2):230-240.
[14] Cao X, Chen J, Imura H , et al. A SVM-based method to extract urban areas from DMSP-OLS and SPOT VGT data[J]. Remote Sensing of Environment, 2009,113(10):2205-2209.
[15] Pandey B, Joshi P K, Seto K C . Monitoring urbanization dynamics in India using DMSP/OLS night time lights and SPOT-VGT data[J]. International Journal of Applied Earth Observation and Geoinformation, 2013,23:49-61.
[16] Wu C S, Murray A T . Estimating impervious surface distribution by spectral mixture analysis[J]. Remote Sensing of Environment, 2003,84(4):493-505.
[17] Yang J, He Y . Automated mapping of impervious surfaces in urban and suburban areas:Linear spectral unmixing of high spatial resolution imagery[J]. International Journal of Applied Earth Observation and Geoinformation, 2017,54:53-64.
[18] Deng C, Wu C . BCI:A biophysical composition index for remote sensing of urban environments[J]. Remote Sensing of Environment, 2012,127:247-259.
[19] Kawamura M, Jayamana S, Tsujiko Y . Relation between social and environmental conditions in Colombo Sri Lanka and the urban index estimated by satellite remote sensing data[J]. The International Archives of Photogrammetry and Remote Sensing, 1996,31:321-326.
[20] Xu H . A new index for delineating built-up land features in satellite imagery[J]. International Journal of Remote Sensing, 2008,29(14):4269-4276.
[21] 查勇, 倪绍祥, 杨山 . 一种利用TM图像自动提取城镇用地信息的有效方法[J]. 遥感学报, 2003,7(1):37-40.
doi: 10.11834/jrs.20030107
Zha Y, Ni S X, Yang S . An effective approach to automatically extract urban land-use from TM imagery[J]. Journal of Remote Sensing, 2003,7(1):37-40.
[22] 陈洁丽, 刘永学, 李满春 , 等. 基于归一化指数分析的居民地遥感信息提取[J]. 测绘科学, 2010,35(2):204-206.
Chen J L, Liu Y X, Li M C , et al. Extracting remote sensing information of residential areas based on the analysis of normalized difference index[J]. Science of Surveying and Mapping, 2010,35(2):204-206.
[23] 田玉刚, 徐韵, 杨晓楠 . 一种提取城市多种不透水层的垂直不透水层指数[J]. 测绘学报, 2017,46(4):468-477.
Tian Y G, Xu Y, Yang X N . Perpendicular impervious index for remote sensing of multiple impervious surface extraction in cities[J]. Acta Geodaetica et Cartographica Sinica, 2017,46(4):468-477.
[24] 吴宏安, 蒋建军, 张海龙 , 等. 比值居民地指数在城镇信息提取中的应用[J]. 南京师大学报(自然科学版), 2006,29(3):118-121.
Wu H A, Jiang J J, Zhang H L , et al. Application of ratio resident-area index to retrieve urban residential areas based on Landsat TM data[J]. Journal of Nanjing Normal University (Natural Science Edition), 2006,29(3):118-121.
[25] Ma Y, Kuang Y, Huang N . Coupling urbanization analyses for studying urban thermal environment and its interplay with biophysical parameters based on TM/ETM+ imagery[J]. International Journal of Applied Earth Observation and Geoinformation, 2010,12(2):110-118.
[26] Xu H . Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery[J]. International Journal of Remote Sensing, 2006,27(14):3025-3033.
[27] Huete A R . A soil-adjusted vegetation index (SAVI)[J]. Remote Sensing of Environment, 1988,25(3):295-309.
[28] Loveland T R, Irons J R . Landsat 8:The plans, the reality,and the legacy[J]. Remote Sensing of Environment, 2016,185:1-6.
[29] Song C, Woodcock C E, Seto K C , et al. Classification and change detection using Landsat TM data:When and how to correct atmospheric effects?[J] Remote Sensing of Environment, 2001,75(2):230-244.
[30] He C, Shi P, Xie D , et al. Improving the normalized difference built-up index to map urban built-up areas using a semiautomatic segmentation approach[J]. Remote Sensing Letters, 2010,1(4):213-221.
[31] Li H, Wang C, Zhong C , et al. Mapping urban bare land automatically from Landsat imagery with a simple index[J]. Remote Sensing, 2017,9(3):249.
[32] Fawcett T . An introduction to ROC analysis[J]. Pattern Recognition Letters, 2006,27(8):861-874.
[33] Schisterman E F, Perkins N J, Liu A , et al. Optimal cut-point and its corresponding Youden index to discriminate individuals using pooled blood samples[J]. Epidemiology, 2005,16(1):73-81.
[34] Youden W J . Index for rating diagnostic tests[J]. Cancer, 1950,3(1):32-35.
[35] Baig M H A, Zhang L, Shuai T , et al. Derivation of a tasseled cap transformation based on Landsat8 at-satellite reflectance[J]. Remote Sensing Letters, 2014,5(5):423-431.
[36] Small C . Estimation of urban vegetation abundance by spectral mixture analysis[J]. International Journal of Remote Sensing, 2001,22(7):1305-1334.
[37] 杨晓楠, 徐韵, 田玉刚 . 一种用于城市信息提取的改进居民地指数[J]. 国土资源遥感, 2016,28(4):127-134.doi: 10.6046/gtzyyg.2016.04.20.
doi: 10.6046/gtzyyg.2016.04.20
Yang X N, Xu Y, Tian Y G . A study of urban area extraction with the modified human settlement index[J]. Remote Sensing for Land and Resources, 2016,28(4):127-134.doi: 10.6046/gtzyyg.2016.04.20.
[38] 徐涵秋, 王美雅 . 地表不透水面信息遥感的主要方法分析[J]. 遥感学报, 2016,20(5):1270-1289.
Xu H Q, Wang M Y . Remote sensing-based retrieval of ground impervious surfaces[J]. Journal of Remote Sensing, 2016,20(5):1270-1289.
[39] Herold M, Gardner M E, Roberts D A . Spectral resolution requirements for mapping urban areas[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003,41(9):1907-1919.
[40] Okujeni A, van der Linden S, Hostert P . Extending the vegetation-impervious-soil model using simulated EnMAP data and machine learning[J]. Remote Sensing of Environment, 2015,158:69-80.
[1] 方梦阳, 刘晓煌, 孔凡全, 李明哲, 裴小龙. 一种基于GEE平台制作逐年土地覆盖数据的方法——以黄河流域为例[J]. 自然资源遥感, 2022, 34(1): 135-141.
[2] 赵怡, 许剑辉, 钟凯文, 王云鹏, 胡泓达, 吴萍昊. 基于Sentinel-2A和Landsat8的城市不透水面的提取[J]. 国土资源遥感, 2021, 33(2): 40-47.
[3] 仇一帆, 柴登峰. 无人工标注数据的Landsat影像云检测深度学习方法[J]. 国土资源遥感, 2021, 33(1): 102-107.
[4] 蔡耀通, 刘书彤, 林辉, 张猛. 基于多源遥感数据的CNN水稻提取研究[J]. 国土资源遥感, 2020, 32(4): 97-104.
[5] 王琳, 谢洪波, 文广超, 杨运航. 基于Landsat8的含蓝藻湖泊水体信息提取方法研究[J]. 国土资源遥感, 2020, 32(4): 130-136.
[6] 曹勇, 陶于祥, 邓陆, 罗小波. 一种抑制裸地的不透水面指数构建[J]. 国土资源遥感, 2020, 32(3): 71-79.
[7] 石海岗, 梁春利, 张建永, 张春雷, 程旭. 岸线变迁对田湾核电站温排水影响遥感调查[J]. 国土资源遥感, 2020, 32(2): 196-203.
[8] 杨玉婷, 陈海兰, 左家旗. 1990—2017年间杭州市不透水面比例遥感监测[J]. 国土资源遥感, 2020, 32(2): 241-250.
[9] 左家旗, 王泽根, 边金虎, 李爱农, 雷光斌, 张正健. 地表不透水面比例遥感反演研究综述[J]. 国土资源遥感, 2019, 31(3): 20-28.
[10] 王大钊, 王思梦, 黄昌. Sentinel-2和Landsat8影像的四种常用水体指数地表水体提取对比[J]. 国土资源遥感, 2019, 31(3): 157-165.
[11] 熊俊楠, 李伟, 程维明, 范春捆, 李进, 赵云亮. 高原地区LST空间分异特征及影响因素研究——以桑珠孜区为例[J]. 国土资源遥感, 2019, 31(2): 164-171.
[12] 刘文雅, 邓孺孺, 梁业恒, 吴仪, 刘永明. 基于辐射传输模型的巢湖叶绿素a浓度反演[J]. 国土资源遥感, 2019, 31(2): 102-110.
[13] 孙桂芬, 覃先林, 刘树超, 李晓彤, 陈小中, 钟祥清. 典型植被指数识别火烧迹地潜力分析[J]. 国土资源遥感, 2019, 31(1): 204-211.
[14] 李静, 孙强强, 张平, 孙丹峰, 温礼, 李宪文. 基于多时相热红外遥感的钢铁企业生产状态辅助监测[J]. 国土资源遥感, 2019, 31(1): 220-228.
[15] 王月如, 韩鹏鹏, 关舒婧, 韩宇, 易琳, 周廷刚, 陈劲松. 基于Landsat8 OLI数据的富贵竹种植区域信息提取[J]. 国土资源遥感, 2019, 31(1): 133-140.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发