Please wait a minute...
 
国土资源遥感  2019, Vol. 31 Issue (4): 167-173    DOI: 10.6046/gtzyyg.2019.04.22
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
基于地形参数的湖泊水储量估算方法——以纳木错为例
马小奇1,2, 卢善龙1(), 马津3, 朱立平4
1. 中国科学院遥感与数字地球研究所遥感科学国家重点实验室,数字地球院重点实验室,北京 100101
2. 中国地质大学(北京)地球科学与资源学院,北京 100083
3. 山东农业大学信息科学与工程学院,泰安 271018
4. 中国科学院青藏高原研究所,北京 100101
Lake water storage estimation method based on topographic parameters: A case study of Nam Co Lake
Xiaoqi MA1,2, Shanlong LU1(), Jin MA3, Liping ZHU4
1. Key Laboratory of Digital Earth Institute, State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100101, China
2. School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
3. College of Information Science and Engineering, Shandong Agricultural University, Taian 271018, China
4. Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
全文: PDF(3263 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

湖泊水储量通常采用观测水位和实测水下地形数据相结合的方法进行估算,因此对于无资料或资料匮乏区域很难获得湖泊水储量信息。为了探讨针对这一问题的解决方法,以西藏自治区纳木错为例,基于湖泊水面以上和水下地形具有相似性的特性,利用湖泊水面以上的数字高程模型(digital elevation model,DEM)构建高程与面积的关系以及面积与体积增量的关系,进而对湖泊水下高程—面积—体积增量递推计算,最终构建面积—体积模型从而估算湖泊水储量。试验结果表明,利用湖泊周围地形构建的基于面积的湖泊水储量估算模型具有较高的精度,以纳木错湖盆DEM求得其湖面面积,计算得其水储量为1 115.70亿m 3,该结果与基于实测水深数据建立的纳木错水下地形DEM计算的水储量(1 019.50亿m 3)相比,绝对误差为96.20亿m 3,相对误差为9.40%。该文为无资料地区水上和水下的地形特征参量基本一致的自然湖泊水储量的估算提供了方法参考。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
马小奇
卢善龙
马津
朱立平
关键词 DEM水储量无资料地区湖泊纳木错    
Abstract

Lake water reserves are often estimated according to water level observation and manually-measured underwater topography data. As for the lakes which lack data, it is really difficult to obtain the information of lake water reserves. In order to explore the solution of this problem, the authors chose the Nam Co Lake in Tibet as a study case. Based on the features of topography similarities between the above lake level and the under lake level, the authors made use of SRTM DEM of above the lake level to construct the relationship between the elevation and the area, the area and the volume increment. In turn, the elevation-area-volume increment of the lake's underwater was recalculated. Finally, the authors constructed the area-volume model to calculate the lake water reserves. The result shows that the calculation is of high relative accuracy. According to the area of the lake by using the DEM of the Nam Co Lake basin,the authors calculated the lake water reserves, which reach 111.570 billion m 3. This result is compared with the calculated water reserves of 101.950 billion m 3 in the Nam Co Lake underwater terrain digital elevation model established based on measured water depth data, and its absolute error is 9.620 billion m 3 whereas its relative error is 9.40%. The results obtained by the authors provide a reference for the estimation of natural lake water reserves with consistent water and underwater topographic parameters in data-absent areas.

Key wordsDEM    water reserves    no data area    lakes    Nam Co Lake
收稿日期: 2018-09-11      出版日期: 2019-12-03
:  P237  
  TP79  
基金资助:国家重点研发计划项目“国家水资源立体监测体系与遥感技术应用”(2017YFC0405802);国家自然科学基金重大研究计划重点支持项目“青藏高原湖泊过程及其与大气相互作用的高分辨率模式发展和模拟研究”(91637209);遥感科学国家重点实验室自由探索/青年人才项目“基于地形自相似理论的湖泊水储量遥感估算方法研究”共同资助(2017YFC0405802)
通讯作者: 卢善龙
作者简介: 马小奇(1991-),男,硕士研究生,主要从事水体遥感方面研究。Email: 2101160228@cugb.edu.cn。
引用本文:   
马小奇, 卢善龙, 马津, 朱立平. 基于地形参数的湖泊水储量估算方法——以纳木错为例[J]. 国土资源遥感, 2019, 31(4): 167-173.
Xiaoqi MA, Shanlong LU, Jin MA, Liping ZHU. Lake water storage estimation method based on topographic parameters: A case study of Nam Co Lake. Remote Sensing for Land & Resources, 2019, 31(4): 167-173.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2019.04.22      或      https://www.gtzyyg.com/CN/Y2019/V31/I4/167
Fig.1  基于湖盆地形相似特征的湖泊水储量估算方法示意图
Fig.2  本文方法流程
Fig.3  纳木错湖面及周围等高线图
高程/m 面积/km2 体积/亿m3 体积增量/亿m3
4 724 1 944.30 0.01 0.01
4 725 1 968.08 19.57 19.56
4 726 1 984.79 39.29 19.72
4 727 2 001.32 59.19 19.90
4 728 2 018.35 79.27 20.08
4 729 2 036.24 99.53 20.26
4 730 2 054.75 119.97 20.44
4 731 2 073.05 140.59 20.62
4 732 2 091.12 161.41 20.82
4 733 2 108.66 182.39 20.98
4 734 2 126.04 203.55 21.16
4 735 2 146.12 224.89 21.34
4 736 2 165.76 246.44 21.55
4 737 2 185.40 268.18 21.74
4 738 2 204.70 290.13 21.95
4 739 2 223.20 312.27 22.14
4 740 2 242.33 334.59 22.32
4 741 2 263.04 357.12 22.53
4 742 2 285.53 379.85 22.73
4 743 2 308.85 402.82 22.97
4 744 2 330.95 426.03 23.21
4 745 2 351.10 449.44 23.41
4 746 2 369.28 473.05 23.61
4 747 2 385.34 496.83 23.74
4 748 2 395.55 520.76 23.93
Tab.1  纳木错湖水面以上单位高程变化对应的体积及体积增量
Fig.4  不同湖面高程与平面面积之间的函数关系
Fig.5  不同高程对应的平面面积与体积增量之间的函数关系
Fig.6  湖面面积与湖水体积的函数关系
Fig.7  纳木错水下地形图
Fig.8  不同水深与对应水平面面积误差
Fig.9  不同水深与对应单位深度范围内的体积增量误差
[1] Medina C, Gomez-Enri J, Alonso J J , et al. Water volume variations in Lake Izabal (Guatemala) from in situ measurements and ENVISAT Radar altimeter (RA-2) and advanced synthetic aperture Radar (ASAR) data products[J]. Journal of Hydrology, 2010,382(1-4):34-48.
[2] Brooks R T, Hayashi M . Depth-area-volume and hydroperiod relationships of ephemeral (vernal) forest pools in southern New England[J]. Wetlands, 2002,22(2):247-255.
[3] Gleason R A, Tangen B A, Laubhan M K , et al. Estimating Water Storage Capacity of Existing and Potentially Restorable Wetland Depressions in a Subbasin of the Red River of the North[R]. USGS Northern Prairie Wildlife Research Center, 2007.
[4] Lane C R, D’Amico E .Calculating the ecosystem service of water storage in isolated wetlands using LiDAR in north central Florida,USA[J]. Wetlands, 2010,30(5):967-977.
[5] Zhang B, Wu Y, Zhu L , et al. Estimation and trend detection of water storage at Nam Co Lake,central Tibetan Plateau[J]. Journal of Hydrology, 2011,405(1-2):161-170.
[6] Heathcote A J, del Giorgio P A, Prairie Y T . Predicting bathymetric features of lakes from the topography of their surrounding landscape[J]. Canadian journal of fisheries and aquatic sciences, 2015,72(5):643-650.
[7] Sobek S, Nisell J, Fölster J . Predicting the depth and volume of lakes from map-derived parameters[J]. Inland Waters, 2011,1(3):177-184.
[8] Messager M L, Lehner B, Grill G , et al. Estimating the volume and age of water stored in global lakes using a geo-statistical approach[J]. Nature communications, 2016,7:13603.
[9] Liao J, Shen G, Li Y . Lake variations in response to climate change in the Tibetan Plateau in the past 40 years[J]. International Journal of Digital Earth, 2013,6(6):534-549.
[10] Yang R, Zhu L, Wang J , et al. Spatiotemporal variations in volume of closed lakes on the Tibetan Plateau and their climatic responses from 1976 to 2013[J]. Climatic Change, 2017,140(3-4):621-633.
[11] 朱立平, 乔宝晋, 杨瑞敏 , 等. 青藏高原湖泊水量与水质变化的新认知[J]. 自然杂志, 2017,39(3):166-172.
Zhu L P, Qiao B J, Yang R M , et al. A new cognition of the variation of water and water quality in the Qinghai-Tibet Plateau[J]. Chinese Journal of Nature, 2017,39(3):166-172.
[12] Qiao B, Zhu L, Wang J , et al. Estimation of lakes water storage and their changes on the northwestern Tibetan Plateau based on bathymetric and Landsat data and driving force analyses[J]. Quaternary International, 2017,454:56-67.
[13] Song C, Huang B, Ke L . Modeling and analysis of lake water storage changes on the Tibetan Plateau using multi-mission satellite data[J]. Remote Sensing of Environment, 2013,135:25-35.
[14] 关志华, 陈传友, 区裕雄 , 等. 西藏河流与湖泊[M]. 北京: 科学出版社, 1984.
Guan Z H, Chen C Y, Ou Y X , et al. Rivers and Lakes in Tibet[M]. Beijing: Science and Technology Press, 1984.
[15] 卢善龙, 肖高怀, 贾立 , 等. 2000—2012年青藏高原湖泊水面时空过程数据集遥感提取[J]. 国土资源遥感, 2016,28(3):181-187.doi: 10.6046/gtzyyg.2016.03.28.
doi: 10.6046/gtzyyg.2016.03.28
Lu S L, Xiao G H, Jia L , et al. Extraction of the spatial-temporal lake water surface dataset in the Tibetan Plateau over the past 10 years[J]. Remote Sensing for Land and Resources, 2016,28(3):181-187.doi: 10.6046/gtzyyg.2016.03.28.
[16] Wang J B, Zhu L P, Daut G , et al. Investigation of bathymetry and water quality of Lake Nam Co,the largest lake on the central Tibetan Plateau,China[J]. Limnology, 2009,10(2):149-158.
[17] Rabus B, Eineder M, Roth A , et al. The shuttle Radar topography mission:A new class of digital elevation models acquired by spaceborne Radar[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2003,57(4):241-262.
[18] van Zyl J J . The shuttle Radar topography mission (SRTM):A breakthrough in remote sensing of topography[J]. Acta Astronautica, 2001,48(5-12):559-565.
[19] Slater J A, Garvey G, Johnston C , et al. The SRTM data “finishing” process and products[J]. Photogrammetric Engineering and Remote Sensing, 2006,72(3):237-247.
[20] 李炳元 . 青藏高原大湖期[J].地理学报,2000(2):174-182.
Li B Y . The great lake period of the Qinghai-Tibet Plateau[J].Acta Geographica Sinica,2000(2):174-182.
[21] 蒋瑛 . 基于RS和GIS的青藏高原高湖面与现在湖面对比研究[D]. 西宁:青海师范大学, 2013.
Jiang Y . Using RS and GIS Research of Comparison Between the Ancient Lake Level and the Lake Level Nowadays on Qinghai-Tibet Plateau[D]. Xining:Qinghai Normal University, 2013.
[22] 马荣华, 杨桂山, 段洪涛 , 等. 中国湖泊的数量,面积与空间分布[J]. 中国科学(地球科学), 2011,41(3):394-401.
Ma R H, Yang G S, Duan H T , et al. China’ s lakes at present:Number,area and spatial distribution[J]. Science China Earth Sciences, 2011,41(3):394-401.
[1] 江娜, 陈超, 韩海丰. 海岸带地类统计模型中DEM空间尺度优选方法[J]. 自然资源遥感, 2022, 34(1): 34-42.
[2] 董天成, 杨肖, 李卉, 张志, 齐睿. 基于Faster R-CNN和MorphACWE模型的SAR图像高原湖泊提取[J]. 国土资源遥感, 2021, 33(1): 129-137.
[3] 程筱茜, 洪友堂, 陈劲松, 叶宝莹. 基于ESTARFM的内陆湖泊遥感动态变化监测[J]. 国土资源遥感, 2020, 32(3): 183-190.
[4] 梁凯旋, 章桂芳, 张浩然. 一种综合DEM和遥感影像提取洪积扇的方法[J]. 国土资源遥感, 2020, 32(2): 138-145.
[5] 安全, 贺中华, 赵翠薇, 梁虹, 焦树林, 杨朝晖. 基于地貌视角的喀斯特流域水系分维估算方法适应性分析[J]. 国土资源遥感, 2019, 31(4): 104-111.
[6] 蒋宗立, 张俊丽, 张震, 刘时银, 魏俊锋, 郭万钦, 祝传广, 黄丹妮. 1972—2011年东昆仑山木孜塔格峰冰川面积变化与物质平衡遥感监测[J]. 国土资源遥感, 2019, 31(4): 128-136.
[7] 燕云鹏, 徐辉, 刘刚, 刘建宇. 2013—2017年班公湖地区冷季湖泊冰情变化分析——中国西部高寒高海拔地区冰冻圈遥感调查(一)[J]. 国土资源遥感, 2019, 31(3): 209-215.
[8] 程滔, 李广泳, 毕凯. 顾及时点特征的水体提取成果空间修正方法[J]. 国土资源遥感, 2019, 31(2): 96-101.
[9] 王群, 范景辉, 周伟, 袁蔚林, 童立强, 郭兆成. DEM辅助偏移量跟踪技术的山地冰川运动监测研究[J]. 国土资源遥感, 2018, 30(3): 167-173.
[10] 束秋妍, 潘云, 宫辉力, 黄志勇, 郑龙群. 基于GRACE的华北平原地下水储量时空变化分析[J]. 国土资源遥感, 2018, 30(2): 132-137.
[11] 刘刚, 燕云鹏, 刘建宇. 青藏高原西部湖泊与构造背景关系遥感研究[J]. 国土资源遥感, 2018, 30(2): 154-161.
[12] 虞舟鲁, 王文超, 戎奕, 沈掌泉. 基于子像元交换算法和地形数据的土地覆盖亚像元制图研究[J]. 国土资源遥感, 2017, 29(4): 88-97.
[13] 于海洋, 罗玲, 马慧慧, 李辉. SRTM(1″)DEM在流域水文分析中的适用性研究[J]. 国土资源遥感, 2017, 29(2): 138-143.
[14] 刁淑娟, 刘春玲, 张涛, 贺鹏, 郭兆成, 涂杰楠. 基于SVM的湖泊咸度等级遥感信息提取方法——以内蒙古巴丹吉林沙漠为例[J]. 国土资源遥感, 2016, 28(4): 114-118.
[15] 卢善龙, 肖高怀, 贾立, 张微, 罗海静. 2000-2012年青藏高原湖泊水面时空过程数据集遥感提取[J]. 国土资源遥感, 2016, 28(3): 181-187.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发