Please wait a minute...
 
国土资源遥感  2020, Vol. 32 Issue (4): 120-129    DOI: 10.6046/gtzyyg.2020.04.17
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
改进型双支网络模型的遥感海水网箱养殖区智能提取方法
郑智腾1(), 范海生2, 王洁3, 吴艳兰1,4, 王彪1(), 黄腾杰2
1.安徽大学资源与环境工程学院,合肥 230601
2.珠海欧比特宇航科技股份有限公司,珠海 519080
3.自然资源部大地测量数据处理中心,西安 710054
4.安徽省地理信息智能技术工程研究中心,合肥 230601
An improved double-branch network method for intelligently extracting marine cage culture area
ZHENG Zhiteng1(), FAN Haisheng2, WANG Jie3, WU Yanlan1,4, WANG Biao1(), HUANG Tengjie2
1. School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
2. Zhuhai Obit Aerospace Technology Co., Ltd., Zhuhai 519080, China
3. Geodetic Data Processing Center, Ministry of Natural Resources, Xi'an 710054, China
4. Anhui Engineering Research Center for Geographical Information Intelligent Technology, Hefei 230601, China
全文: PDF(8218 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

针对传统基于遥感影像数据提取网箱信息中存在的精度低、“异物同谱”、“椒盐”噪声等问题。基于高分二号卫星(Gaofen-2 satellite,GF-2)数据,提出了一种改进的双支网络模型网箱信息提取方法。该模型在空间编码路径上利用密集连接块提取网箱的空间特征信息,在全局编码路径上利用全局平均池化快速获得网箱的全局上下文信息,最终通过特征融合来丰富网箱空间细节特征信息和深层判别特征信息,提高了网箱的提取精度。本文方法在精确率、交并比(intersection over union,IOU)和F1分数这3个评价指标上分别取得了87.37%,72.56%和82.47%的得分,与精度最高的传统方法相比分别提高了7.82,4.12和4.64百分点,与经典的深度学习模型相比较在IOU和F1上也取得了8.43和8.69百分点的提高。实验表明,这一方法能很好地满足海水网箱养殖区的提取工作,此方法可以为近海海水网箱养殖业的监管和调控提供技术支持。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郑智腾
范海生
王洁
吴艳兰
王彪
黄腾杰
关键词 网箱养殖遥感影像双支网络深度学习    
Abstract

For the traditional remote sensing image data extraction, the accuracy of the cage information is low, and there exist the problems of “different object with the same spectrum” and “salt and salt” noise. Based on the Gaofen-2 satellite (“GF-2”) data, this paper proposes an improved double-branch network model cage information extraction method. The model uses the dense connection block to extract the spatial feature information of the cage on the spatial coding path, obtains the global context information of the cage quickly by using the global average pooling on the global coding path, and finally enriches the detailed information of the cage space through feature fusion. And deep discriminant feature information improves the extraction accuracy of the cage. The method has achieved scores of 87.37%, 72.56%, and 82.47% on the three evaluation indicators of precision, IOU, and F1, respectively, which are 7.82, 4.12, and 4.64 percentage points higher than the traditional method with the highest accuracy, respectively. The deep learning model has also achieved an increase of 8.43 and 8.69 percentage points in IOU and F1. Experiments show that the method can meet the extraction work of sea cage culture area, and can provide technical support for the regulation and regulation of offshore sea cage culture.

Key wordscage culture    remote sensing image    double-branch network    deep learning
收稿日期: 2019-11-27      出版日期: 2020-12-23
:  TP79  
基金资助:国家自然科学基金项目“支持多特征整合视觉注意机制的倾斜摄影点云分类深度学习方法”(41971311);2017年珠海引进创新创业团队项目“‘珠海一号’卫星大数据云服务平台与应用示范”(ZH01110405170027PWC)
通讯作者: 王彪
作者简介: 郑智腾(1991-),男,硕士研究生,主要从事遥感卫星信息处理及应用研究。Email:zhitengvip@163.com
引用本文:   
郑智腾, 范海生, 王洁, 吴艳兰, 王彪, 黄腾杰. 改进型双支网络模型的遥感海水网箱养殖区智能提取方法[J]. 国土资源遥感, 2020, 32(4): 120-129.
ZHENG Zhiteng, FAN Haisheng, WANG Jie, WU Yanlan, WANG Biao, HUANG Tengjie. An improved double-branch network method for intelligently extracting marine cage culture area. Remote Sensing for Land & Resources, 2020, 32(4): 120-129.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2020.04.17      或      https://www.gtzyyg.com/CN/Y2020/V32/I4/120
Fig.1  网络结构流程
Fig.2  密集连接块组合的空间编码路径
Fig.3  扩展语义模块组合的全局编码路径
省份 地区 数量
福建省 莆田市 5
泉州市 7
漳州市 11
宁德市 11
广东省 阳江市 2
潮州市 7
湛江市 6
海南省 万宁市 3
陵水黎族自治区 5
Tab.1  样本影像数据信息
Fig.4  网箱样本示例
Fig.5  结果展示
影像数据 p IOU F1
影像1 89.44 83.28 90.68
影像2 91.47 74.84 84.53
影像3 88.91 66.25 78.44
影像4 79.65 65.85 76.24
平均值 87.37 72.56 82.47
Tab.2  测试精度评价
方法 p IOU F1
决策树 73.36 66.00 75.89
SVM 79.55 68.44 77.83
面向对象 67.23 61.13 71.91
本文方法 87.37 72.56 82.47
Tab.3  与传统方法提取精度对比
Fig.6  与传统方法提取结果对比
方法 p IOU F1
U-Net 69.79 45.75 55.54
SegNet 84.02 50.74 61.93
DCCN 88.00 64.13 73.78
本文方法 87.37 72.56 82.47
Tab.4  与经典深度学习网络模型提取精度对比
Fig.7  与经典深度学习网络模型提取结果对比
[1] 张朝晖, 王波, 杨肖杰, 等. 海水网箱养殖的环境管理[J]. 海岸工程, 2006(1):97-102.
Zhang Z H, Wang B, Yang X J, et al. Environmental management for marine fish cages culture[J]. Coastal Engineering, 2006(1):97-102.
[2] 沈雪达. 我国海水网箱养殖业的现状与前景分析[C]// 2008年海洋文化与海岸带经济发展研讨会论文集, 2008:178-181.
Shen X D. Analysis on the current situation and prospect of sea cage aquaculture in China[C]// 2008 Symposium on Marine Culture and Coastal Economic Development, 2008:178-181.
[3] 郑晶予. 地理信息系统在水产养殖中的发展应用[J]. 河北渔业, 2011(12):55-57.
Zheng J Y. Comparison and analysis of the nutrient components of Larimichthys crocea in seine net and traditional net cage[J]. Hebei Fisheries, 2011(12):55-57.
[4] 夏丽华, 刘志根, 徐珊. 柘林湾海水养殖污染负荷估算与空间特征分析[J]. 广东农业科学, 2017,44(12):151-157.
Xia L H, Liu Z G, Xu S. Estim ation on pollution load and analysis on spatial characteristics of m ariculture in Zhelin Bay[J]. Guangdong Agricultural Science, 2017,44(12):151-157.
[5] 陈一波, 宋国宝, 赵文星, 等. 中国海水养殖污染负荷估算[J]. 海洋环境科学, 2016,35(1):1-6.
Chen Y B, Song G B, Zhao W X, et al. Estimating pollutant loadings from mariculture in China[J]. Marine Environmental Science, 2016,35(1):1-6.
[6] 徐源璟, 张增祥, 汪潇, 等. 近30年山东省沿海养殖用地遥感监测分析[J]. 地球信息科学学报, 2014,16(3):482-489.
Xu Y J, Zhang Z X, Wang X, et al. Remote sensing monitoring and analysis of coastal aquaculture land in Shandong Province in recent 30 years[J]. Journal of Earth Information Science, 2014,16(3):482-489.
[7] 樊建勇, 黄海军, 樊辉, 等. 利用RADARSAT-1数据提取海水养殖区面积[J]. 海洋科学, 2005(10):46-49.
Fan J Y, Huang H J, Fan H, et al. Extracting aquaculture area with RADASAT-1[J]. Marine Sciences, 2005(10):46-49.
[8] 李新国, 江南, 杨英宝, 等. 太湖围湖利用与网围养殖的遥感调查与研究[J]. 海洋湖沼通报, 2006(1):93-99.
Li X G, Jiang N, Yang Y B, et al. Remote sensing investigation and survey of lake reclamation and enclosure aquaculture in lake TaiHu[J]. Transactions of Oceanology and Limnology, 2006(1):93-99.
[9] 吴岩峻, 张京红, 田光辉, 等. 利用遥感技术进行海南省水产养殖调查[J]. 热带作物学报, 2006(2):108-111.
Wu Y J, Zhang J H, Tian G H, et al. A survey to aquiculture with remote sensing technology in Hainan Province[J]. Chinese Journal of Tropical Crops, 2006(2):108-111.
[10] 马艳娟, 赵冬玲, 王瑞梅, 等. 基于ASTER数据的近海水产养殖区提取方法[J]. 农业工程学报, 2010,26(s2):120-124.
Ma Y J, Zhao D L, Wang R M, et al. Offshore aquatic farming areas extraction method based on ASTER data[J]. Transactions of the Chinese Society of Agricultural Engineering, 2010,26(s2):120-124.
[11] 初佳兰, 赵冬至, 张丰收. 基于关联规则的裙带菜筏式养殖遥感识别方法[J]. 遥感技术与应用, 2012,27(6):941-946.
Chu J L, Zhao D Z, Zhang F S. Wakame raft interpretation method of remote sensing based on association rules[J]. Remote Sensing Technology and Application, 2012,27(6):941-946.
[12] 卢业伟, 李强子, 杜鑫, 等. 基于高分辨率影像的近海养殖区的一种自动提取方法[J]. 遥感技术与应用, 2015,30(3):486-494.
Lu Y W, Li Q Z, Du X, et al. A method of coastal aquaculture area automatic extraction with spatial resolution images[J]. Remote Sensing Technology and Application, 2015,30(3):486-494.
[13] Rajitha K, Mukherjee C K, Chandran R V, et al. Applications of remote sensing and GIS for sustainable management of shrimp culture in India[J]. Aquacultural Engineering, 2007,36(1):1-17.
[14] 谢玉林, 汪闽, 张新月. 面向对象的海岸带养殖水域提取[J]. 遥感技术与应用, 2009,24(1):68-72.
Xie Y L, Wang M, Zhang X Y. An object-oriented approach for extracting farm waters within coastal belts[J]. Remote Sensing Technology and Application, 2009,24(1):68-72.
[15] 武易天. 基于遥感影像的近海岸水产提取方法研究[D]. 北京:中国科学院大学(中国科学院遥感与数字地球研究所), 2017.
Wu Y T. Research on coastal aquaculture detection using remote sensing images. Beijng:The University of Chinese Academy of Sciences(Institute of Remote Sensing and Digital Earth,Chinese Academy of Sciences), 2017.
[16] 孙裕钰, 应警亮, 王梅, 等. 面向对象的围海养殖用海信息分类提取与动态监测研究[J]. 海洋信息, 2016(2):6-11.
Sun Y Y, Ying J L, Wang M, et al. Object-oriented classification and dynamic monitoring of sea information for seawater culture[J]. Ocean Information, 2016(2):6-11.
[17] 关学彬, 张翠萍, 蒋菊生, 等. 水产养殖遥感监测及信息自动提取方法研究[J]. 国土资源遥感, 2009,21(2):44-47.doi: 10.6046/gtzyyg.2009.02.09.
Guang X B, Zhang C P, Jiang J S, et al. Remote sensing monitoring of aquaculture and automatic information extraction[J]. Remote Sensing for Land and Resources, 2009,21(2):44-47.doi: 10.6046/gtzyyg.2009.02.09.
[18] 王晓轩. 基于面向对象的海岸带水产养殖模式识别[D]. 广州:广州大学, 2011.
Wang X X. Recognition of aquaculture types in coastal zone based on object-oriented method[D]. Guangzhou:Guangzhou University, 2011.
[19] Long J, Shelhamer E, Darrell T, et al. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014,39(4):640-651.
pmid: 27244717
[20] Fu G, Liu C J, Zhou R, et al. Classification for high resolution remote sensing imagery using a fully convolutional network[J]. Remote Sensing, 2017,9,498:1-21.
[21] Jia S, Liu H, Sun F. Aerial scene classification with convolutional neural networks[J]. Advances in Neural Networks, 2015,9377:258-265.
[22] 魏清, 艾玲梅, 叶雪娜. 一种高分辨率遥感图像道路自动提取方法[J]. 计算机技术与发展, 2019(6):130-133.
Wei Q, Ai L M, Ye X N. An automatic road extraction method for high-resolution remote sensing images[J]. Computer Technology and Development, 2019(6):130-133.
[23] 贺浩, 王仕成, 杨东方, 等. 基于Encoder-Decoder网络的遥感影像道路提取方法[J]. 测绘学报, 2019,48(3):66-74.
He H, Wang S C, Yang D F, et al. An road extraction method for remote sensing image based on Encoder Decoder network[J]. Acta Geodaetica et Cartographica Sinica, 2019,48(3):66-74.
[24] Xu Y Y, Wu L, Xie Z, et al. Building extraction in very high resolution remote sensing imagery using deep learning and guided filters[J]. Remote Sensing, 2018,10(1),144:1-18.
[25] Yang H, Wu P H, Yao X D. Building extraction in very high resolution imagery by Dense-Attention networks[J]. Remote Sensing, 2018,10(11),1768:1-23.
[26] Yao X D, Yang H, Wu Y L, et al. Land use classification of the deep convolutional neural network method reducing the loss of spatial features[J]. Sensors, 2019,19(12),2792:1-16.
[27] Yu C Q, Wang J B, Peng C, et al. BiSeNet:Bilateral segmentation network for real-time semantic segmentation[C]// IEEE Computer Vision and Pattern Recognition. IEEE, 2018:1-17.
[28] Wang H Z, Wang Y, Zhang Q, et al. Gated convolutional neural network for semantic segmentation in high-resolution images[J]. Remote Sensing, 2017,9(5),446:1-15.
[29] Gao H, Liu Z, M LV D, et al. Densely connected convolutional networks[C]// IEEE Computer Vision and Pattern Recognition. IEEE, 2017:1-9.
[30] Jegou S, Drozdzal M, Vazquez D, et al. The one hundred layers tiramisu:Fully convolutional DenseNets for semantic segmentation[C]// IEEE Computer Vision and Pattern Recognition. IEEE, 2016:1-9.
[31] Li L, Jian L, Min W, et al. A multiple-feature reuse network to extract buildings from remote sensing imagery[J]. Remote Sensing. 2018,10(9):1350:651-663.
[32] Ioffe S, Szegedy C. Batch normalization:Accelerating deep network training by reducing internal covariate shift[C]// Machine Learning, 2015:1-11.
[33] Chen L C, Papandreou G, Schroff F, et al. Rethinking atrous convolution for semantic image segmentation.[C]// IEEE Computer Vision and Pattern Recognition. IEEE, 2017:1-14.
[34] Zhao H S, Shi J P, Qi X J, et al. Pyramid scene parsing network[C]// IEEE Computer Vision and Pattern Recognition. IEEE, 2017:1-11.
[35] Liu W, Rabinovich A, Berg A C, et al. ParseNet:Looking wider to see better[C]// IEEE Computer Vision and Pattern Recognition. IEEE, 2015:1-11.
[36] Awrangjeb M, Fraser C S. An automatic and threshold-free performance evaluation system for building extraction techniques from airborne LIDAR data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014,7:4184-4198.
[37] Ronneberger O, Fischer P, Brox T, et al. U-Net:Convolutional networks for biomedical image segmentation[C]// IEEE Computer Vision and Pattern Recognition. IEEE, 2015:234-241.
[38] Badrinarayanan V, Kendall A, Cipolla R, et al. SegNet:A deep convolutional encoder-decoder architecture for image segmentation[C]// IEEE Computer Vision and Pattern Recognition. IEEE, 2015:1-14.
[39] 王芳, 夏丽华, 陈智斌, 等. 基于关联规则面向对象的海岸带海水养殖模式遥感识别[J]. 农业工程学报, 2018,34(12):210-217.
Wang F, Xia L H, Chen Z B, et al. Remote sensing identification of coastal zone mariculture modes based on association-rules object-oriented method[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018,34(12):210-217.
[1] 薛白, 王懿哲, 刘书含, 岳明宇, 王艺颖, 赵世湖. 基于孪生注意力网络的高分辨率遥感影像变化检测[J]. 自然资源遥感, 2022, 34(1): 61-66.
[2] 宋仁波, 朱瑜馨, 郭仁杰, 赵鹏飞, 赵珂馨, 朱洁, 陈颖. 基于多源数据集成的城市建筑物三维建模方法[J]. 自然资源遥感, 2022, 34(1): 93-105.
[3] 郭晓征, 姚云军, 贾坤, 张晓通, 赵祥. 基于U-Net深度学习方法火星沙丘提取研究[J]. 自然资源遥感, 2021, 33(4): 130-135.
[4] 桑潇, 张成业, 李军, 朱守杰, 邢江河, 王金阳, 王兴娟, 李佳瑶, 杨颖. 煤炭开采背景下的伊金霍洛旗土地利用变化强度分析[J]. 自然资源遥感, 2021, 33(3): 148-155.
[5] 冯东东, 张志华, 石浩月. 基于多元数据的省会城市城中村精细提取[J]. 自然资源遥感, 2021, 33(3): 272-278.
[6] 王译著, 黄亮, 陈朋弟, 李文国, 余晓娜. 联合显著性和多方法差异影像融合的遥感影像变化检测[J]. 自然资源遥感, 2021, 33(3): 89-96.
[7] 武宇, 张俊, 李屹旭, 黄康钰. 基于改进U-Net的建筑物集群识别研究[J]. 国土资源遥感, 2021, 33(2): 48-54.
[8] 卢麒, 秦军, 姚雪东, 吴艳兰, 朱皓辰. 基于多层次感知网络的GF-2遥感影像建筑物提取[J]. 国土资源遥感, 2021, 33(2): 75-84.
[9] 安健健, 孟庆岩, 胡蝶, 胡新礼, 杨健, 杨天梁. 基于Faster R-CNN的火电厂冷却塔检测及工作状态判定[J]. 国土资源遥感, 2021, 33(2): 93-99.
[10] 胡苏李扬, 李辉, 顾延生, 黄咸雨, 张志麒, 汪迎春. 基于高分辨率遥感影像的神农架大九湖湿地土地利用类型变化及其驱动力分析——来自长时间尺度多源遥感信息的约束[J]. 国土资源遥感, 2021, 33(1): 221-230.
[11] 刘钊, 赵桐, 廖斐凡, 李帅, 李海洋. 基于语义分割网络的高分遥感影像城市建成区提取方法研究与对比分析[J]. 国土资源遥感, 2021, 33(1): 45-53.
[12] 蔡祥, 李琦, 罗言, 齐建东. 面向对象结合深度学习方法的矿区地物提取[J]. 国土资源遥感, 2021, 33(1): 63-71.
[13] 杜方洲, 石玉立, 盛夏. 基于深度学习的TRMM降水产品降尺度研究——以中国东北地区为例[J]. 国土资源遥感, 2020, 32(4): 145-153.
[14] 孙珂. 融合超像元与峰值密度特征的遥感影像分类[J]. 国土资源遥感, 2020, 32(4): 41-45.
[15] 裴婵, 廖铁军. 面向遥感目标检测的多尺度架构搜索方法[J]. 国土资源遥感, 2020, 32(4): 53-60.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发