Please wait a minute...
 
国土资源遥感  2021, Vol. 33 Issue (2): 40-47    DOI: 10.6046/gtzyyg.2020215
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
基于Sentinel-2A和Landsat8的城市不透水面的提取
赵怡1,2,3,4(), 许剑辉1,2, 钟凯文1(), 王云鹏3,4, 胡泓达1,2, 吴萍昊1,2,3,4
1.广东省科学院广州地理研究所/广东省遥感与地理信息应用重点实验室/广东省地理时空大数据工程实验室,广州 510070
2.南方海洋科学与工程广东省实验室(广州),广州 511458
3.中国科学院广州地球化学研究所,广州 510640
4.中国科学院大学,北京 100049
Impervious surface extraction based on Sentinel-2A and Landsat8
ZHAO Yi1,2,3,4(), XU Jianhui1,2, ZHONG Kaiwen1(), WANG Yunpeng3,4, HU Hongda1,2, WU Pinghao1,2,3,4
1. Key Laboratory of Guangdong for Utilization of Remote Sensing and Geographical Information System, Guangdong Engineering Laboratory for Geographic Spatio-temporal Big Data, Guangzhou Institute of Geography, Guangdong Academy of Sciences, Guangzhou 510070, China
2. Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
3. Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
4. University of the Chinese Academy of Sciences, Beijing 100049, China
全文: PDF(4729 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

城市不透水面相关研究对城市的发展至关重要。为了提取城市不透水面盖度,通常采用线性光谱混合分析方法,在亚像元尺度上计算混合像元内的不透水面面积比例。由于端元光谱曲线存在误差,导致不透水面盖度提取精度较低,因而提出端元优化方案,通过Sentinel-2A影像选择比较纯净的端元,利用其光谱信息优化从Landsat8影像中选择的端元的光谱曲线,提高纯净像元光谱曲线精度。此外,结合解混结果优化方案,利用归一化植被指数(normalized differential vegetation index,NDVI)和干旱裸土指数(dry bare-soil index,DBSI),对解混结果进行优化。采用WorldView-2遥感影像进行样本验证,结果显示,该方法所提取不透水面盖度的精度比传统方法提高了20%,为端元选取和不透水面提取提供可靠的理论支持。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
许剑辉
钟凯文
赵怡
许剑辉
王云鹏
钟凯文
胡泓达
王云鹏
吴萍昊
胡泓达
吴萍昊
关键词 线性光谱混合分解不透水面Sentinel-2A端元优化方案线性光谱混合分解不透水面    
Abstract

The extraction of impervious surface (IS) is very important for the development of cities, and linear spectral mixture analysis is commonly adopted to calculate the fraction of IS in the mixed pixel to improve the extraction of the urban IS at the subpixel scale. Owing to errors in the spectra of pure pixels selected from remote sensing images, incorrect fractions of different land cover types often emerge after unmixing. In this paper, the modified endmember selection was proposed to improve the accuracy of the spectral information of endmembers. Sentinel-2A images were applied to selected endmembers to get the spectral, which was used to modify the spectral information of the endmembers from Landsat8. In addition, the optimization scheme of LSMA results in which the normalized differential vegetation index (NDVI) and dry bare-soil index (DBSI) thresholds are used to optimize the mixing results was applied to improve the accuracy of LSMA results. With the WorldView-2 remote sensing image for sample verification, the results showed that the accuracy of IS fraction extracted by the method in this paper was 20% higher than that of the traditional method, providing reliable theoretical support for endmember selection and IS extraction.

Key wordsSentinel-2A    modified endmember selection    linear spectral mixture analysis    impervious surface    Sentinel-2A    modified endmember selection    linear spectral mixture analysis    impervious surface
收稿日期: 2020-07-16      出版日期: 2021-07-21
ZTFLH:  TP79X87  
基金资助:广东省科技计划项目“广东省自然资源科技协同创新中心”(2018B020207002);南方海洋科学与工程广东省实验室(广州重大专项团队项目“粤港澳大湾区海岸带生态环境大数据与分析”编号: GML2019ZD0301);广东省引进创新创业团队项目“地理空间智能技术研发与产业化”(2016ZT06D336);广东省科技计划项目“基于地震烈度速报的灾害损失评估系统研究与公共服务信息应用”(2019B020208013)
通讯作者: 钟凯文
作者简介: 赵 怡(1992-),女,博士研究生,研究方向为城市环境遥感。Email: zhaoyiww@gdas.ac.cn
引用本文:   
赵怡, 许剑辉, 钟凯文, 王云鹏, 胡泓达, 吴萍昊. 基于Sentinel-2A和Landsat8的城市不透水面的提取[J]. 国土资源遥感, 2021, 33(2): 40-47.
ZHAO Yi, XU Jianhui, ZHONG Kaiwen, WANG Yunpeng, HU Hongda, WU Pinghao. Impervious surface extraction based on Sentinel-2A and Landsat8. Remote Sensing for Land & Resources, 2021, 33(2): 40-47.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2020215      或      https://www.gtzyyg.com/CN/Y2021/V33/I2/40
Fig.1  研究区Landsat8 B4(R),B3(G),B2(B)合成影像
Landsat8 OLI Sentinel-2A MSI
波段 空间分
辨率/m
波长/μm 波段 空间分
辨率/m
波长/μm
B1 30 0.433~0.453
B2 30 0.450~0.515 B2 10 0.458~0.523
B3 30 0.525~0.600 B3 10 0.543~0.578
B4 30 0.630~0.680 B4 10 0.650~0.680
B5 30 0.845~0.885 B8 10 0.785~0.900
B6 30 1.560~1.660 B11 20 0.855~0.875
B7 30 2.100~2.300 B12 20 2.100~2.280
Tab.1  Landsat8 OLI 和Sentinel-2A MSI 数据介绍
Landsat8 OLI Sentinel-2A MSI
波段 空间分
辨率/m
波长/μm 波段 空间分
辨率/m
波长/μm
B1 30 0.433~0.453
B2 30 0.450~0.515 B2 10 0.458~0.523
B3 30 0.525~0.600 B3 10 0.543~0.578
B4 30 0.630~0.680 B4 10 0.650~0.680
B5 30 0.845~0.885 B8 10 0.785~0.900
B6 30 1.560~1.660 B11 20 0.855~0.875
B7 30 2.100~2.300 B12 20 2.100~2.280
Tab.1  Landsat8 OLI 和Sentinel-2A MSI 数据介绍
Fig.2  流程图
Fig.2  流程图
Fig.3  端元光谱曲线
Fig.3  端元光谱曲线
Fig.4  不透水面盖度提取结果
Fig.4  不透水面盖度提取结果
Fig.5  线性拟合散点图
Fig.5  线性拟合散点图
研究方法 SE MAE RMSE R2
传统LSMA 0.195 0.240 0.298 0.735
结合端元优化方案的LSMA 0.190 0.217 0.265 0.851
结合端元优化和解混结果优化方案的LSMA -0.066 0.103 0.133 0.879
Tab.2  不同方法提取的城市不透水面盖度精度分析
研究方法 SE MAE RMSE R2
传统LSMA 0.195 0.240 0.298 0.735
结合端元优化方案的LSMA 0.190 0.217 0.265 0.851
结合端元优化和解混结果优化方案的LSMA -0.066 0.103 0.133 0.879
Tab.2  不同方法提取的城市不透水面盖度精度分析
Fig.6  不透水面盖度细节展示图
Fig.6  不透水面盖度细节展示图
[1] Elvidge C D, Tuttle B T, Sutton P C, et al. Global distribution and density of constructed impervious surfaces[J]. Sensors, 2007, 7:1962-1979.
doi: 10.3390/s7091962
[2] Zhu H, Li Y, Fu B. Estimating impervious surfaces by linear spectral mixture analysis under semi-constrained condition[C]// International Conference on Remote Sensing,Environment and Transportation Engineering (RSETE 2013). Paris: Atlantis Press, 2013:357-360.
[3] Zhang H S, Lin H, Zhang Y Z. Remote sensing of impervious surfaces in tropical and subtropical areas[M]. Boca Raton: CRC Press/Taylor & Francis Group, 2015.
Zhang H S, Lin H, Zhang Y Z. Remote sensing of impervious surfaces in tropical and subtropical areas[M]. Boca Raton: CRC Press/Taylor & Francis Group, 2015.
[4] Fan F, Wei F, Weng Q. Improving urban impervious surface mapping by linear spectral mixture analysis and using spectral indices[J]. Canadian Journal of Remote Sensing, 2015, 41(6):577-586.
doi: 10.1080/07038992.2015.1112730
Fan F, Wei F, Weng Q. Improving urban impervious surface mapping by linear spectral mixture analysis and using spectral indices[J]. Canadian Journal of Remote Sensing, 2015, 41(6):577-586.
doi: 10.1080/07038992.2015.1112730
[5] Xu J, Zhao Y, Zhong K, et al. Measuring spatio-temporal dynamics of impervious surface in Guangzhou,China,from 1988 to 2015,using time-series Landsat imagery[J]. Science of the Total Environment, 2018, 627:264-81.
doi: 10.1016/j.scitotenv.2018.01.155
Xu J, Zhao Y, Zhong K, et al. Measuring spatio-temporal dynamics of impervious surface in Guangzhou,China,from 1988 to 2015,using time-series Landsat imagery[J]. Science of the Total Environment, 2018, 627:264-81.
doi: 10.1016/j.scitotenv.2018.01.155
[6] Lu D, Li G, Kuang W, et al. Methods to extract impervious surface areas from satellite images[J]. International Journal of Digital Earth, 2014, 7:93-112.
doi: 10.1080/17538947.2013.866173
Lu D, Li G, Kuang W, et al. Methods to extract impervious surface areas from satellite images[J]. International Journal of Digital Earth, 2014, 7:93-112.
doi: 10.1080/17538947.2013.866173
[7] 赵怡, 许剑辉, 钟凯文, 等. LSMA结合NDBI提取广州市部分城区不透水面的方法[J]. 地理空间信息, 2018, 16:90-93,10.
赵怡, 许剑辉, 钟凯文, 等. LSMA结合NDBI提取广州市部分城区不透水面的方法[J]. 地理空间信息, 2018, 16:90-93,10.
Zhao Y, Xu J H, Zhong K W, et al. Extraction of urban impervious surface in Guangzhou by LSMA with NDBI[J]. Geospatial Information, 2018, 16:90-93,10.
Zhao Y, Xu J H, Zhong K W, et al. Extraction of urban impervious surface in Guangzhou by LSMA with NDBI[J]. Geospatial Information, 2018, 16:90-93,10.
[8] Xu H. Analysis of impervious surface and its impact on urban heat environment using the normalized difference impervious surface index (NDISI)[J]. Photogrammetric Engineering & Remote Sensing, 2010, 76:557-65.
Xu H. Analysis of impervious surface and its impact on urban heat environment using the normalized difference impervious surface index (NDISI)[J]. Photogrammetric Engineering & Remote Sensing, 2010, 76:557-65.
[9] Esch T, Himmler V, Schorcht G, et al. Large-area assessment of impervious surface based on integrated analysis of single-date Landsat-7 images and geospatial vector data[J]. Remote Sensing of Environment, 2009, 113:1678-1690.
doi: 10.1016/j.rse.2009.03.012
Esch T, Himmler V, Schorcht G, et al. Large-area assessment of impervious surface based on integrated analysis of single-date Landsat-7 images and geospatial vector data[J]. Remote Sensing of Environment, 2009, 113:1678-1690.
doi: 10.1016/j.rse.2009.03.012
[10] Sattari F, Hashim M, Pour A B. Thermal sharpening of land surface temperature maps based on the impervious surface index with the TsHARP method to ASTER satellite data:A case study from the metropolitan Kuala Lumpur,Malaysia[J]. Measurement, 2018, 125:262-78.
doi: 10.1016/j.measurement.2018.04.092
Sattari F, Hashim M, Pour A B. Thermal sharpening of land surface temperature maps based on the impervious surface index with the TsHARP method to ASTER satellite data:A case study from the metropolitan Kuala Lumpur,Malaysia[J]. Measurement, 2018, 125:262-78.
doi: 10.1016/j.measurement.2018.04.092
[11] Hu X, Weng Q. Impervious surface area extraction from IKONOS imagery using an object-based fuzzy method[J]. Geocarto International, 2011, 26:3-20.
doi: 10.1080/10106049.2010.535616
Hu X, Weng Q. Impervious surface area extraction from IKONOS imagery using an object-based fuzzy method[J]. Geocarto International, 2011, 26:3-20.
doi: 10.1080/10106049.2010.535616
[12] 许剑辉, 赵怡, 肖明虹, 等. 基于空间自回归模型的广州市NDVI和NDBI与气温关系研究[J]. 国土资源遥感, 2018, 30(2):186-194.doi: 10.6046/gtzyyg.2018.02.25.
doi: 10.6046/gtzyyg.2018.02.25
许剑辉, 赵怡, 肖明虹, 等. 基于空间自回归模型的广州市NDVI和NDBI与气温关系研究[J]. 国土资源遥感, 2018, 30(2):186-194.doi: 10.6046/gtzyyg.2018.02.25.
doi: 10.6046/gtzyyg.2018.02.25
Xu J H, Zhao Y, Xiao M H, et al. Relationship of air temperature to NDVI and NDBI in Guangzhou City using spatial autoregressive model[J]. Remote sensing for Land and Resources, 2018, 30(2):186-194.doi: 10.6046/gtzyyg.2018.02.25.
doi: 10.6046/gtzyyg.2018.02.25
Xu J H, Zhao Y, Xiao M H, et al. Relationship of air temperature to NDVI and NDBI in Guangzhou City using spatial autoregressive model[J]. Remote sensing for Land and Resources, 2018, 30(2):186-194.doi: 10.6046/gtzyyg.2018.02.25.
doi: 10.6046/gtzyyg.2018.02.25
[13] Wang J, Wu Z F, Wu C S, et al. Improving impervious surface estimation:an integrated method of classification and regression trees (CART) and linear spectral mixture analysis (LSMA) based on error analysis[J]. GIScience & Remote Sensing, 2018, 55(4):583-603.
Wang J, Wu Z F, Wu C S, et al. Improving impervious surface estimation:an integrated method of classification and regression trees (CART) and linear spectral mixture analysis (LSMA) based on error analysis[J]. GIScience & Remote Sensing, 2018, 55(4):583-603.
[14] Wu C, Murray A T. Estimating impervious surface distribution by spectral mixture analysis[J]. Remote Sensing of Environment, 2003, 84:493-505.
doi: 10.1016/S0034-4257(02)00136-0
Wu C, Murray A T. Estimating impervious surface distribution by spectral mixture analysis[J]. Remote Sensing of Environment, 2003, 84:493-505.
doi: 10.1016/S0034-4257(02)00136-0
[15] Chen S, Le W. Linear spatial spectral mixture model[J]. IEEE Transactions on Geoscience & Remote Sensing, 2016, 54:3599-611.
Chen S, Le W. Linear spatial spectral mixture model[J]. IEEE Transactions on Geoscience & Remote Sensing, 2016, 54:3599-611.
[16] Ridd M K. Exploring a V-I-S (vegetation-impervious surface-soil) model for urban ecosystem analysis through remote sensing:Comparative anatomy for cities?[J]. International Journal of Remote Sensing, 1995, 16:2165-2185.
doi: 10.1080/01431169508954549
Ridd M K. Exploring a V-I-S (vegetation-impervious surface-soil) model for urban ecosystem analysis through remote sensing:Comparative anatomy for cities?[J]. International Journal of Remote Sensing, 1995, 16:2165-2185.
doi: 10.1080/01431169508954549
[17] Weng Q, Lu D. A sub-pixel analysis of urbanization effect on land surface temperature and its interplay with impervious surface and vegetation coverage in Indianapolis,United States[J]. International Journal of Applied Earth Observation & Geoinformation, 2008, 10:68-83.
Weng Q, Lu D. A sub-pixel analysis of urbanization effect on land surface temperature and its interplay with impervious surface and vegetation coverage in Indianapolis,United States[J]. International Journal of Applied Earth Observation & Geoinformation, 2008, 10:68-83.
[18] 孙艳丽. 联合丰度信息与空谱特征的高光谱影像分类研究[D]. 北京:中国科学院大学(中国科学院遥感与数字地球研究所), 2017.
孙艳丽. 联合丰度信息与空谱特征的高光谱影像分类研究[D]. 北京:中国科学院大学(中国科学院遥感与数字地球研究所), 2017.
Sun Y L. Research on hypercpectral imagery classification by combing abundance information and spectral-spatial feature[J]. Beijing:Chinese Academy of Sciences (Institute of Remote Sensing and Digital Earth,Chinese Academy of Sciences), 2017.
Sun Y L. Research on hypercpectral imagery classification by combing abundance information and spectral-spatial feature[J]. Beijing:Chinese Academy of Sciences (Institute of Remote Sensing and Digital Earth,Chinese Academy of Sciences), 2017.
[19] Li Y, Wang H, Li X B. Fractional vegetation cover estimation based on an improved selective endmember spectral mixture model[J]. PLoS One, 2015, 10(4):e0124608.
doi: 10.1371/journal.pone.0124608
Li Y, Wang H, Li X B. Fractional vegetation cover estimation based on an improved selective endmember spectral mixture model[J]. PLoS One, 2015, 10(4):e0124608.
doi: 10.1371/journal.pone.0124608
[20] 陈子玄, 武文波. 基于线性混合模型的端元提取方法综述[J]. 测绘科学, 2008, 33:49-51.
陈子玄, 武文波. 基于线性混合模型的端元提取方法综述[J]. 测绘科学, 2008, 33:49-51.
Chen Z X, Wu W B. A review on endmember extraction algorithms based on the linear mixing model[J]. Science of Surveying and Mapping, 2008, 33:49-51.
Chen Z X, Wu W B. A review on endmember extraction algorithms based on the linear mixing model[J]. Science of Surveying and Mapping, 2008, 33:49-51.
[21] Lee J B, Woodyatt A S, Berman M. Enhancement of high spectral resolution remote-sensing data by a noise-adjusted principal components transform[J]. IEEE Transactions on Geoscience & Remote Sensing, 1990, 28:295-304.
Lee J B, Woodyatt A S, Berman M. Enhancement of high spectral resolution remote-sensing data by a noise-adjusted principal components transform[J]. IEEE Transactions on Geoscience & Remote Sensing, 1990, 28:295-304.
[22] Fan F. The application and evaluation of two methods based on LSMM model:A case study in Guangzhou[J]. Remote Sensing Technology and Application, 2008, 23:272-277.
Fan F. The application and evaluation of two methods based on LSMM model:A case study in Guangzhou[J]. Remote Sensing Technology and Application, 2008, 23:272-277.
[23] 赵春晖, 郭蕴霆. 一种改进的快速N-FINDR端元提取算法[J]. 光子学报, 2015, 44:42-50.
赵春晖, 郭蕴霆. 一种改进的快速N-FINDR端元提取算法[J]. 光子学报, 2015, 44:42-50.
Zhao C H, Guo Y T. An improved fast N-FINDR endmember extraction algorithm[J]. Acta Photonica Sinica, 2015, 44:42-50.
Zhao C H, Guo Y T. An improved fast N-FINDR endmember extraction algorithm[J]. Acta Photonica Sinica, 2015, 44:42-50.
[24] Drusch M, Bello U D, Carlier S, et al. Sentinel-2:ESA’s optical high-resolution mission for GMES operational services[J]. Remote Sensing of Environment, 2012, 120:25-36.
doi: 10.1016/j.rse.2011.11.026
Drusch M, Bello U D, Carlier S, et al. Sentinel-2:ESA’s optical high-resolution mission for GMES operational services[J]. Remote Sensing of Environment, 2012, 120:25-36.
doi: 10.1016/j.rse.2011.11.026
[25] Zhang H K, Roy D P, Yan L, et al. Characterization of Sentinel-2A and Landsat-8 top of atmosphere,surface,and nadir BRDF adjusted reflectance and NDVI differences[J]. Remote Sensing of Environment, 2018, 215:482-494.
doi: 10.1016/j.rse.2018.04.031
Zhang H K, Roy D P, Yan L, et al. Characterization of Sentinel-2A and Landsat-8 top of atmosphere,surface,and nadir BRDF adjusted reflectance and NDVI differences[J]. Remote Sensing of Environment, 2018, 215:482-494.
doi: 10.1016/j.rse.2018.04.031
[26] Xu J, Zhao Y, Zhong K, et al. Coupling modified linear spectral mixture analysis and soil conservation service curve number (SCS-CN) models to simulate surface runoff:Application to the main urban area of Guangzhou,China[J]. Water, 2016, 8:550.
doi: 10.3390/w8120550
Xu J, Zhao Y, Zhong K, et al. Coupling modified linear spectral mixture analysis and soil conservation service curve number (SCS-CN) models to simulate surface runoff:Application to the main urban area of Guangzhou,China[J]. Water, 2016, 8:550.
doi: 10.3390/w8120550
[27] 徐涵秋, 王美雅. 地表不透水面信息遥感的主要方法分析[J]. 遥感学报, 2016, 20:1270-1289.
徐涵秋, 王美雅. 地表不透水面信息遥感的主要方法分析[J]. 遥感学报, 2016, 20:1270-1289.
Xu H Q, Wang M Y. Remote sensing-based retrieval of ground impervious surfaces[J]. Journal of Remote Sensing, 2016, 20:1270-1289.
Xu H Q, Wang M Y. Remote sensing-based retrieval of ground impervious surfaces[J]. Journal of Remote Sensing, 2016, 20:1270-1289.
[28] Wu C. Normalized spectral mixture analysis for monitoring urban composition using ETM+ imagery[J]. Remote Sensing of Environment, 2004, 93:480-92.
doi: 10.1016/j.rse.2004.08.003
Wu C. Normalized spectral mixture analysis for monitoring urban composition using ETM+ imagery[J]. Remote Sensing of Environment, 2004, 93:480-92.
doi: 10.1016/j.rse.2004.08.003
[29] Zhou C L, Xu H Q. A spectral mixture analysis and mapping of impervious surfaces in built-up land of Fuzhou City[J]. Journal of Image and Graphics, 2007, 12(5):875-881.
Zhou C L, Xu H Q. A spectral mixture analysis and mapping of impervious surfaces in built-up land of Fuzhou City[J]. Journal of Image and Graphics, 2007, 12(5):875-881.
[30] Xu H Q. A study on information extraction of water body with the modified normalized difference water index (MNDWI)[J]. Journal of Remote Sensing, 2005, 9:589-595.
Xu H Q. A study on information extraction of water body with the modified normalized difference water index (MNDWI)[J]. Journal of Remote Sensing, 2005, 9:589-595.
[31] Otsu N. A threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems Man & Cybernetics, 2007, 9:62-66.
Otsu N. A threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems Man & Cybernetics, 2007, 9:62-66.
[32] Kumar B P, Babu K R, Ramachandra M, et al. Data on identification of desertified regions in Anantapur district,Southern India by NDVI approach using remote sensing and GIS[J]. Data in Brief, 2020, 30:105560.
doi: 10.1016/j.dib.2020.105560
Kumar B P, Babu K R, Ramachandra M, et al. Data on identification of desertified regions in Anantapur district,Southern India by NDVI approach using remote sensing and GIS[J]. Data in Brief, 2020, 30:105560.
doi: 10.1016/j.dib.2020.105560
[1] 史姝姝, 窦银银, 陈永强, 匡文慧. 中国海岸带区域城市扩展遥感监测与内部地表覆盖时空分异特征分析[J]. 自然资源遥感, 2022, 34(4): 76-86.
[2] 李益敏, 杨舒婷, 吴博闻, 梁雨西, 孟月玥. 昆明市呈贡区不透水面时空变化及驱动力分析[J]. 自然资源遥感, 2022, 34(2): 136-143.
[3] 王德军, 姜琦刚, 李远华, 关海涛, 赵鹏飞, 习靖. 基于Sentinel-2A/B时序数据与随机森林算法的农耕区土地利用分类[J]. 国土资源遥感, 2020, 32(4): 236-243.
[4] 蔡耀通, 刘书彤, 林辉, 张猛. 基于多源遥感数据的CNN水稻提取研究[J]. 国土资源遥感, 2020, 32(4): 97-104.
[5] 曹勇, 陶于祥, 邓陆, 罗小波. 一种抑制裸地的不透水面指数构建[J]. 国土资源遥感, 2020, 32(3): 71-79.
[6] 杨玉婷, 陈海兰, 左家旗. 1990—2017年间杭州市不透水面比例遥感监测[J]. 国土资源遥感, 2020, 32(2): 241-250.
[7] 刘智丽, 张启斌, 岳德鹏, 郝玉光, 苏凯. 基于Sentinel-2A与NPP-VIIRS夜间灯光数据的城市建成区提取[J]. 国土资源遥感, 2019, 31(4): 227-234.
[8] 左家旗, 王泽根, 边金虎, 李爱农, 雷光斌, 张正健. 地表不透水面比例遥感反演研究综述[J]. 国土资源遥感, 2019, 31(3): 20-28.
[9] 刘畅, 杨康, 程亮, 李满春, 郭紫燕. Landsat8不透水面遥感信息提取方法对比[J]. 国土资源遥感, 2019, 31(3): 148-156.
[10] 易佳思, 胡翔云. 基于Grabcut融合多源数据提取不透水面[J]. 国土资源遥感, 2018, 30(3): 174-180.
[11] 张晓萍, 吕颖, 张华国, 李朝奎. 1990―2011年舟山群岛不透水面动态遥感分析[J]. 国土资源遥感, 2018, 30(2): 178-185.
[12] 贺丽琴, 杨鹏, 景欣, 晏磊, 苏琳琳. 基于MODIS影像及不透水面积的珠江三角洲热岛效应时空分析[J]. 国土资源遥感, 2017, 29(4): 140-146.
[13] 李昕瑜, 杜培军, 阿里木·赛买提. 南京市地表参数变化与热岛效应时空分析[J]. 国土资源遥感, 2014, 26(2): 177-183.
[14] 朱红雷, 李颖, 刘兆礼, 付波霖. 基于半约束条件下不透水面的遥感提取方法[J]. 国土资源遥感, 2014, 26(2): 48-53.
[15] 杨可明, 周玉洁, 齐建伟, 王林伟, 刘士文. 城市不透水面及地表温度的遥感估算[J]. 国土资源遥感, 2014, 26(2): 134-139.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发