Please wait a minute...
 
自然资源遥感  2023, Vol. 35 Issue (1): 115-122    DOI: 10.6046/zrzyyg.2021461
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
基于无人机点云数据土壤粗糙度测量方法
张田1,2,3(), 周忠发1,2,3(), 王玲玉1,2,3, 赵馨1,2,3, 张文辉1,2,3, 张淑1,2,3, 王宇1,2,3
1.贵州师范大学地理与环境科学学院/喀斯特研究院,贵阳 550001
2.贵州省喀斯特山地生态环境国家重点实验室培育基地,贵阳 550001
3.国家喀斯特石漠化防治工程技术研究中心,贵阳 550001
A method for soil roughness measurement based on UAV point cloud data
ZHANG Tian1,2,3(), ZHOU Zhongfa1,2,3(), WANG Lingyu1,2,3, ZHAO Xin1,2,3, ZHANG Wenhui1,2,3, ZHANG Shu1,2,3, WANG Yu1,2,3
1. School of Geography and Environmental Science, Institute of Karst Science, Guizhou Normal University, Guiyang 550001,China
2. State Key Laboratory Incubation Base for Mountain Ecology Environment of Guizhou Province, Guiyang 550001,China
3. State Engineering Technology Institute for Karst Desertification Control, Guiyang 550001, China
全文: PDF(3601 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

耕地土壤粗糙度是影响土壤水分、微波遥感观测和植物生长等农情信息监测方面的重要因子。土壤粗糙度通常是根据野外拍摄照片进行判读,但存在判读效率低、受人为因素影响等不足。无人机低空遥感对观测地表起伏状况具有良好的敏感性,因此基于摄影测量利用无人机对地表进行拍摄,将其结果与粗糙度测量板获取的数据进行对比,探讨无人机数据测量土壤粗糙度的精确性。研究结果表明: 近景摄影测量的平均绝对误差主要集中在0.4~1.2 cm之间,平均相对误差为6.16%,均方根误差为0.40 cm。表明无人机点云摄影测量可有效运用于地表粗糙度的测量,且当分块采样的面积越小时,获得粗糙度的值越精确。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张田
周忠发
王玲玉
赵馨
张文辉
张淑
王宇
关键词 土壤粗糙度点云数据近景摄影测量三维建模    
Abstract

The soil roughness of cultivated land is an important element affecting the monitoring of agricultural information, such as soil moisture, microwave remote sensing observation, and plant growth. Soil roughness is generally interpreted according to field photos. However, such interpretation suffers some shortcomings such as low efficiency and anthropogenic effects on processing results. UAV low-altitude remote sensing is sensitive to surface relief. To explore the precision of the soil roughness determined using UAV data, this study employed UAV photogrammetry to photograph the surface and then compared the photogrammetry results with the data obtained using a gauging plate for soil roughness. The results show that the close-range photogrammetry had mean absolute errors of mainly 0.4~1.2 cm, a mean relative error of 6.16%, and a root mean square error of 0.40 cm. Therefore, UAV-based point cloud photogrammetry could be effectively applied to the measurement of surface roughness, and a smaller sampling area is associated with more accurate soil roughness.

Key wordssoil roughness    point cloud data    close-range photogrammetry    three-dimensional modeling
收稿日期: 2021-12-27      出版日期: 2023-03-20
ZTFLH:  P237  
基金资助:国家自然科学基金项目“喀斯特石漠化地区生态资产与区域贫困耦合机制研究”(41661088);贵州省高层次创新型人才培养计划项目“贵州省高层次创新型人才培养计划——‘百’层次人才”(黔科合平台人才〔2016〕5674);贵州省科学技术基金资助项目“高原山区特色农作物超低空遥感特征构建与识别方法研究”(黔科合基础-ZK[2021]一般194);国家自然科学基金面上项目“地块作物生长的光学与SAR遥感同步观测响应机制研究”(42071316)
通讯作者: 周忠发(1969-),男,教授,博士生导师,研究方向为喀斯特生态环境、GIS与遥感。Email: fa6897@163.com
作者简介: 张田(1997-),女,硕士研究生,研究方向为地理信息系统与遥感。Email: 20010090327@gznu.edu.cn
引用本文:   
张田, 周忠发, 王玲玉, 赵馨, 张文辉, 张淑, 王宇. 基于无人机点云数据土壤粗糙度测量方法[J]. 自然资源遥感, 2023, 35(1): 115-122.
ZHANG Tian, ZHOU Zhongfa, WANG Lingyu, ZHAO Xin, ZHANG Wenhui, ZHANG Shu, WANG Yu. A method for soil roughness measurement based on UAV point cloud data. Remote Sensing for Natural Resources, 2023, 35(1): 115-122.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2021461      或      https://www.gtzyyg.com/CN/Y2023/V35/I1/115
Fig.1  数据采样示意图
类别 参数 参数值
无人机参数 无人机质量/g 907(起飞重量)
最大上升速度/(m/s) 5
最大下降速度/(m/s) 3
相机参数 相机型号 L1D-20C_10.3
焦距/mm 10
相片ISO曝光范围 100~3 200(自动)
相机分辨率/像素 5 472×3 648
飞行参数 飞行高度/m 10
航向/旁向重叠度/% 75/75
拍摄模式 悬停拍摄
地面分辨率/cm 0.43
照片数量/张 94
Tab.1  无人机、相机及飞行参数
Fig.2  技术路线
Fig.3  分块采样示意图
测量板法 无人机点云摄影测量法
RMSH ACL RMSH ACL
平均值 1.08 44.04 1.09 42.40
方差 0.06 53.00 0.05 41.41
最大值 1.39 55.00 1.48 49.00
最小值 0.80 23.00 0.60 24.00
Tab.2  表面粗糙度参数测量结果对比
Fig.4  测量板法与近景摄影测量法结果对比
Fig.5  不同测量方法所取得的同一土壤样线比较
Fig.6  无人机摄影测量计算结果
采样面积/
(cm×cm)
RMSH/cm ACL/cm 与上位测量结果之差
RMSH/cm ACL/cm
100×100 0.16 1.44
80×80 0.13 1.00 0.03 0.44
60×60 0.11 0.53 0.02 0.47
40×40 0.07 0.89 0.04 -0.36
20×20 0.04 0.26 0.03 0.63
10×10 0.02 0.14 0.02 0.12
Tab.3  不同采样面积下的土壤粗糙度参数测量结果
Fig.7  不同采样面积的土壤表面模型
方法 外业数据
采集/s
内业处理
与计算/min
所需
设备
RMSE/
cm
测量
维度
测量板法 60 10 测量板 1.08 2D
无人机点云摄影测量法 2 20 无人机 0.32 3D
Tab.4  2种方法所需时间及精度对比
[1] 徐元柳. 基于裸露地表辐射传输模型的粗糙度反演与地形校正[D]. 北京: 中国地质大学(北京), 2009:45-53.
Xu Y L. Roughness retrieval and topographic correction based on bare surface radiative transfer model[D]. Beijing: China University of Geosciences(Beijing), 2009:45-53.
[2] 江冲亚, 方红亮, 魏珊珊. 地表粗糙度参数化研究综述[J]. 地球科学进展, 2012, 27(3):292-303.
Jiang C Y, Fang H L, Wei S S. Review of land surface roughness parameterization study[J]. Advances in Earth Science, 2012, 27(3):292-303.
[3] 姜灵海. 基于哨兵数据的土壤水分反演算法研究[D]. 成都: 电子科技大学, 2020.
Jiang L H. Research on soil moisture retreval based on Sentinel data[D]. Chengdu: University of Electronic Science and Technology of China, 2020.
[4] 梁勇, 杨磊, 吴秋兰, 等. 地表粗糙度影响下的GNSS-R土壤湿度反演仿真分析[J]. 武汉大学学报(信息科学版), 2018, 43(10):1546-1552.
Liang Y, Yang L, Wu Q L, et al. Simulation of soil roughness impact in GNSS-R soil moisture retrieval[J]. Geomatics and Information Science of Wuhan University, 2018, 43(10):1546-1552.
[5] Alvarez-Mozos J, Verhoest N E, Larranaga A, et al. Influence of surface roughness spatial variability and temporal dynamics on the retrieval of soil moisture from SAR observations[J]. Sensors (Basel), 2009, 9(1):463-489.
doi: 10.3390/s90100463
[6] 陈世超, 林剑辉, 孙宇瑞, 等. 基于土壤表面粗糙度预测降雨影响下的表层土壤孔隙度[J]. 北京林业大学学报, 2013, 35(2):69-74.
Chen S C, Lin J H, Sun Y R, et al. Predicting topsoil porosity using soil surface roughness under rainfall influence[J]. Journal of Beijing Forestry University, 2013, 35(2):69-74.
[7] Darboux F, Gascuelodoux C, Davy P. Effects of surface water storage by soil roughness on overland-flow generation[J]. Earth Surface Processes and Landforms, 2010, 27(3):223-233.
doi: 10.1002/esp.v27:3
[8] García Moreno R, et al.Díaz Álvarez M C,Saa Requejo A, Multifractal analysis of soil surface roughness[J]. Vadose Zone Journal, 2008, 7(2):512-520.
doi: 10.2136/vzj2007.0016
[9] Thomsen L M, Baartman J E M, Barneveld R J, et al. Soil surface roughness:Comparing old and new measuring methods and application in a soil erosion model[J]. Soil, 2015, 1(1):399-400.
doi: 10.5194/soil-1-399-2015
[10] Riegler-Nurscher P, Moitzi G, Prankl J, et al. Machine vision for soil roughness measurement and control of tillage machines during seedbed preparation[J]. Soil and Tillage Research, 2020, 196:104351.
doi: 10.1016/j.still.2019.104351
[11] Robichaud P R, Molnau M. Measuring soil roughness changes with an ultrasonic profiler[J]. Transactions of the ASAE, 1990, 33(6):1851-1858.
doi: 10.13031/2013.31549
[12] 陶浩然, 陈权, 李震, 等. 近景摄影测量提高裸露地表粗糙度测量精度[J]. 农业工程学报, 2017, 33(15):162-167.
Tao H R, Chen Q, Li Z, et al. Improvement of soil surface roughness measurement accuracy by close-range photogrammetry[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(15):162-167.
[13] 蔡祥, 孙宇瑞, 林剑辉, 等. 基于激光反射的土壤表面粗糙度测量装置设计与试验[J]. 农业机械学报, 2010, 41(1):68-69.
Cai X, Sun Y R, Lin J H, et al. Design of a laser scanner for characterizing soil surface roughness[J]. Transactions of the Chinese Society for Agricultural Machinery, 2010, 41(1):68-69.
[14] 王章琼, 白俊龙, 张明. 数码摄影测量及三维建模在岩体结构面粗糙度教学中的应用[J]. 实验技术与管理, 2020, 37(3):45-47.
Wang Z Q, Bai J L, Zhang M. Application of digital photogrammetry and 3D modeling in teaching of rock discontinuity surface roughness[J]. Experimental Technology and Management, 2020, 37(3):45-47.
[15] 王洪晓, 张光辉, 朱平宗, 等. 3种地表随机糙率测量方法比较[J]. 水土保持研究, 2020, 27(4):72-76.
Wang H X, Zhang G H, Zhu P Z, et al. Comparison of three metho-ds to measure surface random roughness[J]. Journal of Soil and Water Conservation, 2020, 27(4):72-76.
[16] 张胜宾, 黄培奎, 赵祚喜. 土壤表面粗糙度检测方法研究[J]. 农机化研究, 2016, 38(11):257-262.
Zhang S B, Huang P K, Zhao Z X. A research on soil surface roughness measurement methods[J]. Journal of Agricultural Mechanization Research, 2016, 38(11):257-262.
[17] 李红阳. 基于无人机摄影测量技术的土地调查方法研究[D]. 唐山: 华北理工大学, 2018.
Li H Y. The research method of land survey based on UAV photogrammetry techology[D]. Tangshan: North China University of Science and Technology, 2018.
[18] 李德仁, 李明. 无人机遥感系统的研究进展与应用前景[J]. 武汉大学学报(信息科学版), 2014, 39(5):505-512.
Li D R, Li M. Research progress and application prospect of UAV remote sensing system[J]. Geomatics and Information Science of Wuhan University, 2014, 39(5):505-512.
[19] Warner W S. Mapping a three-dimensional soil surface with hand-held 35 mm photography[J]. Soil and Tillage Research, 1995, 34(3):187-197.
doi: 10.1016/0167-1987(95)00462-2
[20] 许元红. 低空无人机技术在贵州山区大比例尺DLG制作中的应用研究[D]. 贵阳: 贵州师范大学, 2018:1-8.
Xu Y H. The application of low-altitude drone thchnology in the production of large scale DLG in Guizhou mountain area[D]. Guiyang: Guizhou Normal University, 2018:1-8.
[21] 胡玉祥, 张洪德, 熊文辉, 等. 基于三维激光点云的地表竣工规划验收测绘级工程应用[J]. 测绘通报, 2020(s1):53-58.
Hu Y X, Zhang H D, Xiong W H, et al. Survey and engineering application of metro completion plan acceptance based on 3D laser point cloud[J]. Bulletin of Surveying and Mapping, 2020(s1):53-58.
[22] 尹林江, 周忠发, 李韶慧, 等. 基于无人机可见光影像对喀斯特地区植被信息提取与覆盖度研究[J]. 草地学报, 2020, 28(6):1664-1672.
doi: 10.11733/j.issn.1007-0435.2020.06.021
Yin L J, Zhou Z F, Li S H, et al. Research on vegetation extraction and fractional vegetation cover of Karst area based on visible light image of UAV[J]. Acta Agrestia Sinica, 2020, 28(6):1664-1672.
[23] 冯静静. 基于LiDAR点云数据与高分辨率影像的单木参数提取[D]. 北京: 北京林业大学, 2017:1-5.
Feng J J. Single tree parameter extraction based on LiDAR point cloud data and high resolution image[D]. Beijing: Beijing Forestry University, 2017:1-5.
[24] 赵勋, 岳彩荣, 李春干, 等. 基于机载LiDAR点云数据森林郁闭度估测[J]. 遥感技术与应用, 2020, 35(5):1136-1145.
Zhao X, Yue C R, Li C G, et al. Canopy density estimation based on airborne LiDAR point cloud data[J]. Remote Sensing Technolo-gy and Application, 2020, 35(5):1136-1145.
[25] 姜云, 王军, 陈方圆. 黑土区大田尺度下LiDAR点云数据农作物种植区提取[J]. 测绘工程, 2020, 29(4):32-37.
Jiang Y, Wang J, Chen F Y. Extraction of paddy planting area based on LiDAR point cloud data at field-scale in black soil area[J]. Engineering of Surveying and Mapping, 2020, 29(4):32-37.
[26] 段平, 李佳, 李海坤, 等. 无人机影像点云与地面激光点云匹配的三维建模方法[J]. 测绘工程, 2020, 29(4):44-47.
Duan P, Li J, Li H K, et al. 3D modeling method of UAV image point cloud matching with ground laser point cloud[J]. Engineering of Surveying and Mapping, 2020, 29(4):44-47.
[27] 刘洁, 杨晓菊, 廖宜涛, 等. 基于线结构激光传感器的土壤表面粗糙度测量方法研究[J]. 农业工程学报, 2019, 35(3):134-138.
Liu J, Yang X J, Liao Y T, et al. Study on soil surface roughness measurement method based on linear laser sensor[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(3):134-138.
[28] 罗达, 林杭生, 金钊, 等. 无人机数字摄影测量与激光雷达在地形地貌与地表覆盖研究中的应用及比较[J]. 地球环境学报, 2018, 10(3):215-222.
Luo D, Lin H S, Jin Z, et al. Application and comparison of UAV digital photogrammetry and LiDAR in topography and land cover research[J]. Journal of Earth Environment, 2018, 10(3):215-222.
[29] Verhoeven G. Taking computer vision aloft-archaeological three-dimensional reconstructions from aerial photographs with PhotoScan[J]. Archaeological Prospection, 2011, 18(1):67-73.
doi: 10.1002/arp.v18.1
[30] Remondino F, El-Hakim S. Image-based 3D modelling:A review[J]. Photogrammetric Record, 2010, 21(115):269-291.
doi: 10.1111/(ISSN)1477-9730
[31] Tavani S, Granado P, Corradetti A, et al. Building a virtual outcrop,extracting geological information from it,and sharing the results in Google Earth via OpenPlot and Photoscan:An example from the Khaviz Anticline (Iran)[J]. Computers and Geosciences, 2014, 63:44-53.
doi: 10.1016/j.cageo.2013.10.013
[32] 柴子为, 康峻, 王力, 等. 基于无人机影像的山地人工林景观DEM构建[J]. 遥感技术与应用, 2015, 30(3):504-509.
Cai Z W, Kang J, Wang L, et al. Construction of mountain plantation landscape DEM based on UAV image[J]. Remote Sensing Technology and Application, 2015, 30(3):504-509.
[33] 行敏锋, 黄方, 官雨薇. 基于图像处理的土壤表面粗糙度测量实验研究[J]. 实验科学与技术, 2019, 17(6):1-3.
Xing M F, Huang F, Guan Y W. Experimental study on measurement of soil surface roughness based on image processing[J]. Experiment Science and Technology, 2019, 17(6):1-3.
[34] 刘立超, 魏国梁, 张青松, 等. 基于激光雷达的农业耕作微地貌测量装置设计与实验[J]. 农业机械学报, 2019, 50(7):85-91.
Liu L C, Wei G L, Zhang Q S, et al. Design and experiment of agricultural microgeomorphology measuring device based on LiDAR[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(7):85-91.
[35] 雷志斌. 基于高分三号雷达数据的作物覆盖区土壤水分反演研究[D]. 北京. 中国地质大学(北京), 2020:18-20.
Lei Z B. Research on soil moisture retrieval of crop covering area based on GaoFen3 Radar data[D]. Beijing: China University of Geosciences(Beijing), 2020:18-20.
[36] 李俐, 王荻, 潘彩霞, 等. 基于神经网络与决策树的土壤粗糙度测量[J]. 农业工程学报, 2015, 31(14):132-138.
Li L, Wang D, Pan C X, et al. Soil surface roughness measuring method based on neural network and decision tree[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(14):132-138.
[37] 张恒瑞, 段喜明, 魏征, 等. 基于无人机多光谱遥感的华北地区夏玉米LAI监测[J]. 山西农业科学, 2021, 49(5):608-614.
Zhang H R, Duan X M, Wei Z, et al. LAI monitoring of summer maize in North China based on UAV multi-spectral remote sensing[J]. Journal of Shanxi Agricultural Sciences, 2021, 49(5):608-614.
[38] 郑兴明, 赵凯, 李晓洁. 农田表面粗糙度参数的测量与精度分析[J]. 地球信息科学学报, 2013, 15(5):753-755.
Zheng X M, Zhao K, Li X J. Accuracy analysis of agriculture soil surface roughness parameter[J]. Journal of Geo-Information Science, 2013, 15(5):753-755.
[39] Kim S B, Moghaddam M, Tsang L, et al. Models of L-band Radar backscattering coefficients over global rain for soil moisture retrieval[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(2):1381-1396.
doi: 10.1109/TGRS.2013.2250980
[1] 崔子伟, 徐文学, 刘焱雄, 郭亚栋, 孟祥谦, 蒋正坤. 机载激光测深数据获取及处理技术现状[J]. 自然资源遥感, 2023, 35(3): 1-9.
[2] 宋仁波, 朱瑜馨, 郭仁杰, 赵鹏飞, 赵珂馨, 朱洁, 陈颖. 基于多源数据集成的城市建筑物三维建模方法[J]. 自然资源遥感, 2022, 34(1): 93-105.
[3] 连会青, 孟璐, 韩瑞刚, 杨艺, 余标. 基于无人机遥感的地质信息提取——以柳江盆地为例[J]. 国土资源遥感, 2020, 32(3): 136-142.
[4] 余忠迪, 李辉, 巴芳, 王朝阳. 基于消费者级无人机的城市三维建模[J]. 国土资源遥感, 2018, 30(2): 67-72.
[5] 焦其松, 张景发, 蒋洪波, 宿渊源, 王旭. 基于TLS技术的典型建筑物震害信息三维建模分析——以彭州市白鹿中学为例[J]. 国土资源遥感, 2016, 28(1): 166-171.
[6] 郑莎莎, 董品亮, 王成, 习晓环, 吕毅斌. 基于LiDAR点云数据的树冠空隙度指数分析[J]. 国土资源遥感, 2014, 26(4): 103-110.
[7] 马静, 刘祥磊. 三维可视化在城市旧区改造建设中的应用[J]. 国土资源遥感, 2014, 26(3): 170-174.
[8] 成晓倩, 樊良新, 赵红强. 基于图像分割技术的城区机载LiDAR数据滤波方法[J]. 国土资源遥感, 2012, 24(3): 29-32.
[9] 李婷, 詹庆明, 喻亮. 基于地物特征提取的车载激光点云数据分类方法[J]. 国土资源遥感, 2012, 24(1): 17-21.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发