Please wait a minute...
 
自然资源遥感  2023, Vol. 35 Issue (3): 1-9    DOI: 10.6046/zrzyyg.2022436
  海岸带空间资源及生态健康遥感监测专栏 本期目录 | 过刊浏览 | 高级检索 |
机载激光测深数据获取及处理技术现状
崔子伟1,2(), 徐文学2(), 刘焱雄2, 郭亚栋2, 孟祥谦1, 蒋正坤2
1.山东科技大学海洋科学与工程学院,青岛 266590
2.自然资源部第一海洋研究所,青岛 266061
Current status of the acquisition and processing of airborne laser sounding data
CUI Ziwei1,2(), XU Wenxue2(), LIU Yanxiong2, GUO Yadong2, MENG Xiangqian1, JIANG Zhengkun2
1. College of Ocean Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
2. First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
全文: PDF(2378 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

水下地形测量是测绘科学的重要分支,与人类开展海洋、湖泊等作业密切相关。在探测浅水区水下地形时,传统声学方法面临船体搁浅风险,被动光学方式则存在测量精度低等缺陷。机载激光测深技术的出现为解决浅水水深测量难题提供了新的手段,其在近岸区域应用可填补浅水区水下地形数据空白。文章首先简要介绍了机载激光测深系统的组成和原理; 其次,对激光测深数据的获取做了说明,并重点讨论了机载激光测深数据处理的关键技术,包括波形数据处理、误差修正和点云数据处理等; 最后,总结了机载激光测深存在的技术难点及未来的发展趋势。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
崔子伟
徐文学
刘焱雄
郭亚栋
孟祥谦
蒋正坤
关键词 机载激光测深激光测深数据获取波形数据处理误差修正点云数据处理    
Abstract

As an essential branch of surveying and mapping science, underwater topographic surveys are closely related to human operations in oceans and lakes. For underwater topography detection in shallow-water areas, conventional acoustic methods face the hull stranding risk, and passive optical methods have low survey accuracy. The airborne laser sounding is a novel means for bathymetric surveys in shallow-water areas, and its application in offshore areas can fill the gap of underwater topography data in shallow-water areas. This study presents a brief introduction to the composition and principle of the airborne laser sounding system, followed by a description of laser sounding data acquisition. Furthermore, this study highlights the critical processing technologies for airborne laser sounding data, including waveform data processing, error correction, and point cloud data processing. Finally, this study summarizes the technical difficulties and developmental trends of airborne laser sounding.

Key wordsairborne laser sounding    laser sounding data acquisition    waveform data processing    error correction    point cloud data processing
收稿日期: 2022-11-17      出版日期: 2023-09-19
ZTFLH:  TP79  
基金资助:国家自然科学基金项目“机载激光测深回波波形分解及折射率改正方法研究”(41871381);“基于机载激光测深数据的海底DEM生成及底质分类研究”(41401573);国家卫星海洋应用中心项目“机载激光雷达测深”(20CINC-024051-01)
通讯作者: 徐文学(1980-),男,博士,副研究员,研究方向为激光扫描数据处理、海洋测绘。Email: xuwx@fio.org.cn
作者简介: 崔子伟(1998-),男,硕士研究生,研究方向为机载激光测深数据处理。Email: lucky_cuiziwei@163.com
引用本文:   
崔子伟, 徐文学, 刘焱雄, 郭亚栋, 孟祥谦, 蒋正坤. 机载激光测深数据获取及处理技术现状[J]. 自然资源遥感, 2023, 35(3): 1-9.
CUI Ziwei, XU Wenxue, LIU Yanxiong, GUO Yadong, MENG Xiangqian, JIANG Zhengkun. Current status of the acquisition and processing of airborne laser sounding data. Remote Sensing for Natural Resources, 2023, 35(3): 1-9.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2022436      或      https://www.gtzyyg.com/CN/Y2023/V35/I3/1
Fig.1  机载激光测深系统示意图
Fig.2  单频机载激光测深原理示意图
Fig.3  不同底质光谱反射率曲线[17]
Fig.4  机载激光测深数据获取流程
Fig.5  机载激光测深数据处理流程
误差项 误差源
系统本身 量测时间误差 各部件工作时间并非完全同步,脉冲位置估计和非线性信号处理导致检测时间不准确
设备安置误差 系统扫描轴偏转、IMU角度不平行
外部环境 光速测量误差 不同介质中光速不同,但光速数值较大且在浅水测深,所以此影响较小
大气传输误差 在大气中传输因吸收或散射导致能量损耗
波浪潮汐变化误差 激光入射瞬间波浪和潮汐变化导致瞬时水深偏差
折射误差 大气与水密度不同产生折射现象,大气与水面间的折射现象影响较大,而在水体中的影响相对较小
水中散射误差 散射效应主要分为后向散射效应和前向散射效应
不规则地形起伏误差 水下地形不规则,具有不同坡度、曲率和粗糙度
其他因素 数据计算精度误差 处理数据时涉及到矩阵坐标变换等复杂过程,产生计算精度误差
Tab.1  机载激光测深误差分析
[1] Harold K F. Multibeam bathymetric sonar:Sea beam and hydro chart[J]. Marine Geodesy, 1980, 4(2):77-93.
doi: 10.1080/15210608009379375
[2] 王文杰. 基于单波束多波束测深系统的海洋航道测量方法[J]. 电子测量技术, 2019, 42(8):45-51.
Wang W J. Sea channel survey method considering single beam multi beam bathymetric system[J]. Electronic Measurement Technology, 2019, 42(8):45-51.
[3] 曹彬才. 遥感测深数据处理方法研究[D]. 郑州: 战略支援部队信息工程大学, 2017.
Cao B C. A study of remotely-sensed data processing in bathymetry[D]. Zhengzhou: PLA Strategic Support Force Information Engineering University, 2017.
[4] 马毅, 张杰, 张靖宇, 等. 浅海水深光学遥感研究进展[J]. 海洋科学进展, 2018, 36(3):331-351.
Ma Y, Zhang J, Zhang J Y, et al. Progress in shallow water depth mapping from optical remote sensing[J]. Advances in Marine Science, 2018, 36(3):331-351.
[5] Wright A E, Conlin D L, Shope S M. Assessing the accuracy of underwater photogrammetry for archaeology:A comparison of structure from motion photogrammetry and real time kinematic survey at the east key construction wreck[J]. Journal of Marine Science and Engineering, 2020, 8(11):849.
doi: 10.3390/jmse8110849
[6] Muirhead K, Cracknell A P. Airborne LiDAR bathymetry[J]. International Journal of Remote Sensing, 1986, 7(5):597-614.
doi: 10.1080/01431168608954714
[7] 陈文革, 黄铁侠, 卢益民. 机载海洋激光雷达发展综述[J]. 激光技术, 1998(3):21-26.
Chen W G, Huang T X, Lu Y M. Survey of airborne oceanic LiDAR[J]. Laser Technology, 1998(3):21-26.
[8] 翟国君, 吴太旗, 欧阳永忠, 等. 机载激光测深技术研究进展[J]. 海洋测绘, 2012, 32(2):67-71.
Zhai G J, Wu T Q, Ouyang Y Z, et al. The development of airborne laser bathymetry[J]. Hydrographic Surveying Charting, 2012, 32(2):67-71.
[9] 秦海明, 王成, 习晓环, 等. 机载激光雷达测深技术与应用研究进展[J]. 遥感技术与应用, 2016, 31(4):617-624.
Qin H M, Wang C, Xi X H, et al. Development of airborne laser bathymetric technology and applications[J]. Remote Sensing Technology and Application, 2016, 31(4):617-624.
[10] 刘焱雄, 郭锴, 何秀凤, 等. 机载激光测深技术及其研究进展[J]. 武汉大学学报(信息科学版), 2017, 42(9):1185-1194.
Liu Y X, Guo K, He X F, et al. Research progress of airborne laser bathymetry technology[J]. Geomatics and Information Science of Wuhan University, 2017, 42(9):1185-1194.
[11] 李奇, 王建超, 韩亚超, 等. 基于CZMIL Nova的中国海岸带机载激光雷达测深潜力分析[J]. 国土资源遥感, 2020, 32(1):184-190.doi:10.6046/gtzyyg.2020.01.25.
doi: 10.6046/gtzyyg.2020.01.25
Li Q, Wang J C, Han Y C, et al. Potential evaluation of China’s coastal airborne LiDAR bathymetry based on CZMIL Nova[J]. Remote Sensing for Land and Resources, 2020, 32(1):184-190.doi:10.6046/gtzyyg.2020.01.25.
doi: 10.6046/gtzyyg.2020.01.25
[12] 国家市场监督管理总局, 中国国家标准化管理委员会. GB/T 39624—2020机载激光雷达水下地形测量技术规范[S]. 北京: 中国标准出版社, 2020.
State Administration for Market Regulation, Standardization Administration. GB/T 39624—2020 Technical specification for underwater topographic survey of airborne LiDAR[S]. Beijing: China Standards Publishing House, 2020.
[13] 王丹菂. 机载激光测深回波信号探测技术研究[D]. 郑州: 战略支援部队信息工程大学, 2018.
Wang D D. Research on signal detection for airborne LiDAR bathymetry[D]. Zhengzhou: PLA Strategic Support Force Information Engineering University, 2018.
[14] 徐广袖, 翟国君, 吴太旗, 等. 机载激光测深作业的关键技术问题[J]. 海洋测绘, 2019, 39(2):45-49.
Xu G X, Zhai G J, Wu T Q, et al. The key technical issues on airborne LiDAR bathymetry operation[J]. Hydrographic Surveying and Charting, 2019, 39(2):45-49.
[15] 叶修松. 机载激光水深探测技术基础及数据处理方法研究[D]. 郑州: 战略支援部队信息工程大学, 2010.
Ye X S. Research on principle and date processing methods of airborne laser bathymetric technique[D]. Zhengzhou: PLA Strategic Support Force Information Engineering University, 2010.
[16] 吴芳, 金鼎坚, 张宗贵, 等. 基于CZMIL测深技术的海陆一体地形测量初探[J]. 自然资源遥感, 2021, 33(4):173-180.doi:10.6046/zrzyyg.2021.10.07.
doi: 10.6046/zrzyyg.2021.10.07
Wu F, Jin D J, Zhang Z G, et al. A preliminary study on land-sea integrated topographic surveying based on CZMIL bathymetric technique[J]. Remote Sensing for Natural Resources, 2021, 33(4):173-180.doi:10.6046/zrzyyg.2021.10.07.
doi: 10.6046/zrzyyg.2021.10.07
[17] 曾凯, 许占堂, 杨跃忠, 等. 浅海底质高光谱反射率测量系统的设计及应用[J]. 光谱学与光谱分析, 2020, 40(2):579-585.
Zeng K, Xu Z T, Yang Y Z, et al. Design and application of reflectance measurement system for sea bottom in optically shallow water[J]. Spectroscopy and Spectral Analysis, 2020, 40(2):579-585.
[18] 金鼎坚, 吴芳, 于坤, 等. 机载激光雷达测深系统大规模应用测试与评估——以中国海岸带为例[J]. 红外与激光工程, 2020, 49(s2):9-23.
Jin D J, Wu F, Yu K, et al. Large-scale application test and evaluation of an airborne LiDAR bathymetry system:A case study in China’s coastal zone[J]. Infrared and Laser Engineering, 2020, 49(s2):9-23.
[19] 颜炳玉. 激光对人体的损伤,激光产品的分级标准及安全防护措施[J]. 应用激光, 1987(4):172-176.
Yan B Y. The damage of laser to human body and the methods of protection[J]. Applied Laser, 1987(4):172-176.
[20] 王成, 习晓环, 杨学博, 等. 激光雷达遥感导论[M]. 北京: 高等教育出版社, 2022:50.
Wang C, Xi X H, Yang X B, et al. Introduction to LiDAR remote sensing[M]. Beijing: Higher Education Press, 2022:50.
[21] 王越. 机载激光浅海测深技术的现状和发展[J]. 测绘地理信息, 2014, 39(3):38-42.
Wang Y. Current status and development of airborne laser bathymetry technology[J]. Journal of Geomatics, 2014, 39(3):38-42.
[22] 曲直, 卢秀山, 左建章, 等. 机载POS系统中惯性测量单元精度检校方法[J]. 测绘科学, 2011, 36(5):131-133.
Qu Z, Lu X S, Zuo J Z, et al. Calibration method of IMU on airborne POS[J]. Science of Surveying and Mapping, 2011, 36(5):131-133.
[23] 黎东, 王成, 习晓环, 等. 共面约束的机载LiDAR IMU安置角误差自动检校方法[J]. 测绘科学, 2017, 42(9):98-103.
Li D, Wang C, Xi X H, et al. An automatic bore-sight calibration method for airborne LiDAR based on co-planar constrains[J]. Science of Surveying and Mapping, 2017, 42(9):98-103.
[24] 王延存. 机载激光雷达全波形数据处理研究[D]. 青岛: 山东科技大学, 2019.
Wang Y C. Research on full-waveform data processing of airborne LiDAR system[D]. Qingdao: Shandong University of Science and Technology, 2019.
[25] Jutzi B, Stilla U. Range Determination with waveform recording laser systems using a Wiener filter[J]. ISPRS Journal of Photogra-mmetry and Remote Sensing, 2006, 61(2):95-107.
[26] Biggs D S C, Anderws M. Acceleration of iterative image restoration algorithms[J]. Applied Optics, 1997, 36(8):1766-1775.
pmid: 18250863
[27] Lawson C L, Hanson R J. Solving least squares problems[M]. Englewood Cliffs,NJ: Prentice-Hall, 1974:50-60.
[28] Wagner W, Roncat A, Melzer T, et al. Waveform analysis techniques in airborne laser scanning[C]// International Archives of Photogrammetry and Remote Sensing, 2007, 36(3):413-418.
[29] 姚春华, 陈卫标, 臧华国, 等. 机载激光测深系统的最小可探测深度研究[J]. 光学学报, 2004(10):1406-1410.
Yao C H, Chen W B, Zang H G, et al. Study of the capability of minimum depth using an airborne laser bathymetry[J]. Acta Optica Sinica, 2004(10):1406-1410.
[30] Wong H, Antoniou A. Characterization and decomposition of waveforms for laser 500 airborne system[J]. IEEE Transactions on Geo-science and Remote Sensing, 1991, 29 (6):912-921.
doi: 10.1109/36.101370
[31] Abdallah H, Bailly J S, Baghdadi N N, et al. Potential of space-borne LiDAR sensors for global bathymetry in coastal and inland waters[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2013, 6(1):202-216.
doi: 10.1109/JSTARS.4609443
[32] 李凯, 张永生, 童晓冲, 等. 不同函数拟合水体后向散射波形对激光测深精度的影响[J]. 武汉大学学报(信息科学版), 2018, 43(4):548-554.
Li K, Zhang Y S, Tong X C, et al. The impact of different fitting functions for water backscatter waveforms on the accuracy of laser sounding[J]. Geomatics and Information Science of Wuhan University, 2018, 43(4):548-554.
[33] 丁凯. 单波段机载测深激光雷达全波形数据处理算法及应用研究[D]. 深圳: 深圳大学, 2018.
Ding K. Airborne LiDAR bathymetry full waveform data processing methods and application study[D]. Shenzhen: Shenzhen University, 2018.
[34] 郭锴, 刘焱雄, 徐文学, 等. 机载激光测深波形分解中LM与EM参数优化方法比较[J]. 测绘学报, 2020, 49(1):117-131.
doi: 10.11947/j.AGCS.2020.20180242
Guo K, Liu Y X, Xu W X, et al. Comparison of LM and EM parameter optimization methods for airborne laser bathymetric full-waveform decomposition[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(1):117-131.
doi: 10.11947/j.AGCS.2020.20180242
[35] Shen X, Li Q, Wu G, et al. Decomposition of LiDAR waveforms by B-spline-based modeling[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 128(3):182-191.
doi: 10.1016/j.isprsjprs.2017.03.006
[36] 王丹菂, 徐青, 邢帅, 等. 一种由粗到精的机载激光测深信号检测方法[J]. 测绘学报, 2018, 47(8):1148-1159.
doi: 10.11947/j.AGCS.2018.20170466
Wang D D, Xu Q, Xing S, et al. A coarse-to-fine signal detection method for airborne LiDAR bathymetry[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(8):1148-1159.
doi: 10.11947/j.AGCS.2018.20170466
[37] 亓超, 宿殿鹏, 王贤昆, 等. 基于分层异构模型的机载激光测深波形拟合算法[J]. 红外与激光工程, 2019, 48(2):114-121.
Qi C, Su D P, Wang X K, et al. Fitting algorithm for airborne laser bathymetric waveforms based on layered heterogeneous model[J]. Infrared and Laser Engineering, 2019, 48(2):114-121.
[38] Roland S, Gottfried M, Martin P, et al. Design and evaluation of a full-wave surface and bottom-detection algorithm for LiDAR bathymetry of very shallow waters[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 150:1-10.
doi: 10.1016/j.isprsjprs.2019.02.002
[39] Yang F, Qi C, Su D, et al. An airborne LiDAR bathymetric waveform decomposition method in very shallow water:A case study around Yuanzhi Island in the South China Sea[J]. International Journal of Applied Earth Observation and Geoinformation, 2022, 109:102788.
doi: 10.1016/j.jag.2022.102788
[40] Guenther G C, Larocque P E, Lillycropj W. Multiple surface channels in scanning hydrographic operational airborne LiDAR survey (SHOALS) airborne LiDAR[C]//Proceedings of 1994 International Society for Optical Engineering. Bergen,Norway: SPIE, 1994:422-431.
[41] 王丹菂, 邢帅, 徐青, 等. 单频机载激光测深海陆回波自动分类方法[J]. 测绘学报, 2022, 51(5):750-761.
doi: 10.11947/j.AGCS.2022.20200314
Wang D D, Xing S, Xu Q, et al. Automatic sea-land waveform classification method for single-wavelength airborne LiDAR bathymetry[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(5):750-761.
doi: 10.11947/j.AGCS.2022.20200314
[42] Ji X, Tang Q, Xu W, et al. Island feature classification for single-wavelength airborne LiDAR bathymetry based on full-waveform parameters[J]. Applied Optics, 2021, 60(11):3055-3061.
doi: 10.1364/AO.420673
[43] 胡善江, 贺岩, 陶邦一, 等. 基于深度学习的机载激光海洋测深海陆波形分类(英文)[J]. 红外与激光工程, 2019, 48(11):165-172.
Hu S J, He Y, Tao B Y, et al. Classification of sea and land waveforms based on deep learning for airborne laser bathymetry[J]. Infrared and Laser Engineering, 2019, 48(11):165-172.
[44] Fernandez-Diaz J C, Glennie C L, Carter W E, et al. Early results of simultaneous terrain and shallow water bathymetry mapping using a single-wavelength airborne LiDAR sensor[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2013, 7(2):623-635.
doi: 10.1109/JSTARS.4609443
[45] Smeeckaert J, Clément M, David N. Classification of water surfaces using airborne topographic LiDAR data[C]// International Archives of Photogrammetry,Remote Sensing and Spatial Information Sciences (IAPRS), 2013, XL-1/W1:321-326.
[46] 王晓阳. 基于机载激光测深波形和点云数据的水陆分类研究[D]. 泰安: 山东农业大学, 2021.
Wang X Y. Water-land classification based on waveform and point cloud data of airborne LiDAR bathymetry[D]. Taian: Shandong Agricultural University, 2021.
[47] 王鑫, 潘华志, 罗胜, 等. 机载激光雷达测深技术研究与进展[J]. 海洋测绘, 2019, 39(5):78-82.
Wang X, Pan H Z, Luo S, et al. Bathymetric technology and research status of airborne LiDAR[J]. Hydrographic Surveying Charting, 2019, 39(5):78-82.
[48] Su D, Yang F, Ma Y, et al. Propagated uncertainty models arising from device,environment,and target for a small laser spot airborne LiDAR bathymetry and its verification in the South China Sea[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(5):3213-3231.
doi: 10.1109/TGRS.36
[49] Patrick W, Hans-Gerd M, Katja R, et al. Analysis and correction of ocean wave pattern induced systematic coordinate errors in airborne LiDAR bathymetry[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 128:314-325.
doi: 10.1016/j.isprsjprs.2017.04.008
[50] 赵建虎, 吴敬文, 赵兴磊, 等. 一种改进的机载激光测深深度偏差模型[J]. 武汉大学学报(信息科学版), 2019, 44(3):328-333.
Zhao J H, Wu J W, Zhao X L, et al. A correction model for depth bias in airborne LiDAR bathymetry systems[J]. Geomatics and Information Science of Wuhan University, 2019, 44(3):328-333.
[51] 叶修松, 张传定, 王爱兵, 等. 机载激光水深测量误差分析[J]. 测绘科学技术学报, 2008, 25(6):400-402.
Ye X S, Zhang C D, Wang A B, et al. Analysis of the airborne laser scanning bathymetry errors[J]. Journal of Geomatics Science and Technology, 2008, 25(6):400-402.
[52] Yang F, Su D, Ma Y, et al. Refraction correction of airborne LiDAR bathymetry based on sea surface profile and ray tracing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(11):6141-6149.
doi: 10.1109/TGRS.2017.2721442
[53] Xu W, Guo K, Liu Y, et al. Refraction error correction of airborne LiDAR bathymetry data considering sea surface waves[J]. International Journal of Applied Earth Observation and Geoinformation, 2021, 102:102402.
doi: 10.1016/j.jag.2021.102402
[54] 杨安秀. 基于多元地形特征的机载LiDAR点云抽稀算法研究[D]. 青岛: 山东科技大学, 2018.
Yang A X. A point cloud thinning method of airborne LiDAR based on mutivariate terrain features[D]. Qingdao: Shandong University of Science and Technology, 2018.
[55] Zhang W, Qi J, Wan P, et al. An easy-to-use airborne LiDAR data filtering method based on cloth simulation[J]. Remote Sensing, 2016, 8(6):501.
doi: 10.3390/rs8060501
[56] Yang A, Wu Z, Yang F, et al. Filtering of airborne LiDAR bathymetry based on bidirectional cloth simulation[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 163:49-61.
doi: 10.1016/j.isprsjprs.2020.03.004
[57] 张凡, 徐文学, 唐玲, 等. 机载激光测深数据配准方法比较[J]. 南京信息工程大学学报(自然科学版), 2021, 13(6):678-685.
Zhang F, Xu W X, Tang L, et al. Comparison of airborne LiDAR bathymetry data refistration methods[J]. Journal of Nanjing University of Information Science and Technology(Natural Science Edition), 2021, 13(6):678-685.
[58] Yang F, Su D, Zhang K, et al. Mosaicing of airborne LiDAR bathymetry strips based on Monte Carlo matching[J]. Marine Geophysical Research, 2017, 38(3):303-311.
doi: 10.1007/s11001-017-9309-4
[59] Wang X, Yang F, Zhang H, et al. Registration of airborne LiDAR bathymetry and multibeam echo sounder point clouds[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 20(3):1-5.
[60] Ji X, Yang B, Tang Q, et al. A coarse-to-fine strip mosaicing model for airborne bathymetric LiDAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(10):8129-8142.
doi: 10.1109/TGRS.2021.3050789
[61] Xu W, Zhang F, Jiang T, et al. Feature curve-based registration for airborne LiDAR bathymetry point clouds[J]. International Journal of Applied Earth Observation and Geoinformation, 2022, 112:102883.
doi: 10.1016/j.jag.2022.102883
[1] 王丽英, 马旭伟, 有泽, 王世超, CAMARA Mahamadou. 基于多元GMM的机载多光谱LiDAR点云空谱联合分类[J]. 自然资源遥感, 2023, 35(3): 88-96.
[2] 冯晓刚, 赵毅, 李萌, 周在辉, 李凤霞, 王园, 杨永佺. 城市河道及周临用地对地表热环境的影响研究[J]. 自然资源遥感, 2023, 35(3): 264-273.
[3] 伍炜超, 叶发旺. 面向多背景环境的Sentinel-2云检测[J]. 自然资源遥感, 2023, 35(3): 124-133.
[4] 董婷, 符潍奇, 邵攀, 高利鹏, 武昌东. 基于改进全连接条件随机场的SAR影像变化检测[J]. 自然资源遥感, 2023, 35(3): 134-144.
[5] 林佳惠, 刘广, 范景辉, 赵红丽, 白世彪, 潘宏宇. 联合改进U-Net模型和D-InSAR技术采矿沉陷提取方法[J]. 自然资源遥感, 2023, 35(3): 145-152.
[6] 高晨, 马栋, 屈曼, 钱建国, 尹海权, 侯晓真. 基于PS-InSAR的怀来地震台钻孔体应变异常机理研究[J]. 自然资源遥感, 2023, 35(3): 153-159.
[7] 席磊, 舒清态, 孙杨, 黄金君, 宋涵玥. 基于ICESat2的西南山地森林LAI遥感估测模型优化[J]. 自然资源遥感, 2023, 35(3): 160-169.
[8] 王建强, 邹朝晖, 刘荣波, 刘志松. 基于U2-Net深度学习模型的沿海水产养殖塘遥感信息提取[J]. 自然资源遥感, 2023, 35(3): 17-24.
[9] 陈昊宇, 项磊, 高贺, 牟金燚, 索晓晶, 滑博伟. 基于分数阶微分的土壤全氮高光谱反演[J]. 自然资源遥感, 2023, 35(3): 170-178.
[10] 胡晨霞, 邹滨, 梁玉, 贺晨骋, 林治家. 高空间分辨率生态系统生产总值时空演化分析——以2000—2020年湖南省为例[J]. 自然资源遥感, 2023, 35(3): 179-189.
[11] 阳煜瑾, 杨帆, 徐祯妮, 李祝. 洞庭湖区生态服务-经济发展时空协调分析与优化[J]. 自然资源遥感, 2023, 35(3): 190-200.
[12] 排日海·合力力, 昝梅. 干旱区绿洲城市生态环境时空格局变化及影响因子研究[J]. 自然资源遥感, 2023, 35(3): 201-211.
[13] 王叶兰, 杨鑫, 郝利娜. 2001—2021年川西高原植被NDVI时空变化及影响因素分析[J]. 自然资源遥感, 2023, 35(3): 212-220.
[14] 娄燕寒, 廖静娟, 陈嘉明. Sentinel-3A卫星测高数据监测长江中下游河流水位变化[J]. 自然资源遥感, 2023, 35(3): 221-229.
[15] 周石松, 汤玉奇, 程宇翔, 邹滨, 冯徽徽. 郴州市郴江河流域水质与土地利用关联的空间异质性分析[J]. 自然资源遥感, 2023, 35(3): 230-240.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发