Please wait a minute...
 
自然资源遥感  2023, Vol. 35 Issue (3): 107-115    DOI: 10.6046/zrzyyg.2022300
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
基于控制点蒙特卡罗检验的无人机地形建模精度影响因素研究
陈凯1,2(), 王春1,2,3(), 代文1, 盛业华4,5, 刘爱利1, 汤国安4,5
1.南京信息工程大学地理科学学院,南京 210044
2.滁州学院地理信息与旅游学院,滁州 239000
3.实景地理环境安徽省重点实验室,滁州 239000
4.南京师范大学地理科学学院,南京 210023
5.南京师范大学虚拟地理环境教育部重点实验室,南京 210023
Factors influencing the terrain modeling accuracy of UAV photogrammetry based on Monte Carlo tests of control points
CHEN Kai1,2(), WANG Chun1,2,3(), DAI Wen1, SHENG Yehua4,5, LIU Aili1, TANG Guoan4,5
1. School of Geographical Sciences, Nanjing University of Information Science and Technology, Nanjing 210044, China
2. School of Geographic Information and Tourism, Chuzhou University, Chuzhou 239000, China
3. Anhui Province Key Laboratory of Physical Geographic Environment, Chuzhou 239000, China
4. School of Geography, Nanjing Normal University, Nanjing 210023, China
5. Key Laboratory of Virtual Geographic Environment, Ministry of Education, Nanjing Normal University, Nanjing 210023, China
全文: PDF(7469 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

针对消费级无人机相机单一、镜头畸变大,地形建模精度受航线设计和控制测量的影响等问题,设计了不同的数据采集方案和控制点蒙特卡罗检验,分析了相机倾角、航高和控制点数量对地形建模精度的影响。在黄土高原3个典型小流域的实验结果表明: ①在进行无人机摄影测量数据处理时,应先使用蒙特卡罗检验对控制点质量进行分析,排除控制点误差再进行数据处理。②相机倾角方面,在无地面控制点时,采用较大角度的倾斜摄影不仅有利于提高样区整体精度,还优化了误差的空间分布; 这与相机畸变模型的优化有关。在有地面控制点时,相机倾角对高程精度的影响不大,但是影响控制点饱和数量; 相对于垂直摄影,倾斜摄影需要略多的控制点才能达到最优精度。③航高方面,在有地面控制点时,使用倾斜摄影有利于降低高程精度对航高变化的敏感性。在有地面控制点时,航高在60~160 m范围内对高程精度的影响不明显,且航高变化不影响控制点饱和数量。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈凯
王春
代文
盛业华
刘爱利
汤国安
关键词 无人机摄影测量地形建模倾斜摄影蒙特卡罗航线设计控制点数量    
Abstract

Consumer-grade unmanned aerial vehicles (UAVs) each have a single camera and high lens distortion. The accuracy of terrain modeling using UAVs is influenced by route design and control surveys. By designing different data collection schemes and Monte Carlo tests, this study investigated the influence of the camera’s tilt angle, flight height, and the number of ground control points (GCPs) on terrain modeling accuracy in three small river basins on the Loess Plateau. The results are as follows: ① Before the processing of UAV photogrammetry data, it is necessary to analyze the quality of GCPs through Monte Carlo tests to eliminate GCP errors. ② The effects of the tilt angles of cameras include: in the case of no available GCPs, tilt photogrammetry with tilt angles of cameras can both improve the overall accuracy of the sampling area and optimize the spatial distribution of errors, with these advantages related to the optimization of the camera distortion model; in the case of available GCPs, the camera tilt angle has minor influence on elevation accuracy but affects the saturation number of GCPs. Compared with vertical photogrammetry, tilt photogrammetry requires slightly more GCPs to achieve the optimal accuracy. ③ The effects of the flight height include: in the case of no available GCPs, tilt photogrammetry can reduce the sensitivity of elevation accuracy to flight height; in the case of available GCPs, flight heights of 60~160 m have no significant influence on elevation accuracy, and the change in flight height does not affect the saturation number of GCPs.

Key wordsUAV photogrammetry    terrain modeling    tilt photogrammetry    Monte Carlo test    route design    number of ground control points
收稿日期: 2022-07-27      出版日期: 2023-09-19
ZTFLH:  TP79  
基金资助:安徽高校省级自然科学研究重大项目“乡村数字孪生全息实景地理环境关键技术与示范应用研究”(KJ2021ZD0130);安徽省高等学校科研计划项目“实景地理环境科研创新团队”(2022AH010066);2018年度安徽省学术和技术带头人后备人选科研活动经费资助项目(2018H191);国家自然科学基金项目“面向地貌学本源的数字地形分析理论与方法研究”(41930102);“黄土高原小流域人工造貌信息图谱研究”(42171402)
通讯作者: 王春(1975-),男,博士,教授,研究方向为实景三维建模与数字地形分析。Email: wangchun93@126.com
作者简介: 陈 凯(1999-),男,硕士研究生,研究方向为实景三维建模与数字地形分析。Email: 20211210002@nuist.edu.cn
引用本文:   
陈凯, 王春, 代文, 盛业华, 刘爱利, 汤国安. 基于控制点蒙特卡罗检验的无人机地形建模精度影响因素研究[J]. 自然资源遥感, 2023, 35(3): 107-115.
CHEN Kai, WANG Chun, DAI Wen, SHENG Yehua, LIU Aili, TANG Guoan. Factors influencing the terrain modeling accuracy of UAV photogrammetry based on Monte Carlo tests of control points. Remote Sensing for Natural Resources, 2023, 35(3): 107-115.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2022300      或      https://www.gtzyyg.com/CN/Y2023/V35/I3/107
Fig.1  研究区航线设计与控制点分布
Fig.2  无人机摄影测量技术路线
样区 相机倾角/(°) 航高/m 飞行
架次
地面分
辨率/cm
T1 0, 5, 10, 20, 30, 40, 50 100 7 2.7
T2 0, 5, 10, 20, 30, 40, 50 70 7 1.9
T3 0, 10, 20, 30, 40 80 5 2.2
Tab.1  无人机摄影测量相机倾角实验
样区 航高/m 相机倾
角/(°)
飞行
架次
地面分
辨率/cm
T1 60, 80, 100, 120, 140, 160 0 7 1.6 ~ 4.4
T2 60, 80, 100, 120, 140, 160 15 6 1.6 ~ 4.4
Tab.2  无人机摄影测量航高实验
Fig.3  控制点质量分析
Fig.4  相机倾角对RMSEZ的影响
样区 相机倾角/(°)
0 10 30 40
T1
T2
Tab.3  不同相机倾角下检查点误差的空间分布情况
Tab.4  不同相机倾角下相机参数自相关模型
倾角/(°) T1样区 T2样区 T3样区
0
10
20
30
40
Tab.5  T1,T2,T3样区不同相机倾角下控制点蒙特卡罗检验结果
Fig.5  航高对RMSEZ的影响
Fig.6  不同航高下控制点蒙特卡罗检验结果
[1] James M R, Robson S, Smith M W. 3-D uncertainty-based topographic change detection with structure-from-motion photogrammetry:Precision maps for ground control and directly georeferenced surveys[J]. Earth Surface Processes and Landforms, 2017, 42(12):1769-1788.
doi: 10.1002/esp.v42.12
[2] 杨胜天, 王鹏飞, 王娟, 等. 结合无人机航空摄影测量的河道流量估算[J]. 遥感学报, 2021, 25(6):1284-1293.
Yang S T, Wang P F, Wang J, et al. River flow estimation method based on UAV aerial photogrammetry[J]. National Remote Sensing Bulletin, 2021, 25(6): 1284-1293.
doi: 10.11834/jrs.20209082
[3] 代文, 汤国安, 胡光辉, 等. 基于无人机摄影测量的地形变化检测方法与小流域输沙模型研究[J]. 地理科学进展, 2021, 40(9):1570-1580.
doi: 10.18306/dlkxjz.2021.09.011
Dai W, Tang G A, Hu G H, et al. Modelling sediment transport in space in a watershed based on topographic change detection by UAV survey[J]. Progress in Geography, 2021, 40(9):1570-1580.
doi: 10.18306/dlkxjz.2021.09.011
[4] 刘树超, 邵全琴, 杨帆, 等. 黄河源区放牧家畜数量及空间分布无人机遥感调查[J]. 地球信息科学学报, 2021, 23(7):1286-1295.
doi: 10.12082/dqxxkx.2021.210075
Liu S C, Shao Q Q, Yang F, et al. Using UAVs remote sensing for population and distribution of grazing livestock in the source region of the Yellow River[J]. Journal of Geo-Information Science, 2021, 23(7): 1286-1295.
[5] James M R, Chandler J H, Eltner A, et al. Guidelines on the use of structure-from-motion photogrammetry in geomorphic research[J]. Earth Surface Processes and Landforms, 2019, 44(10):2081-2084.
doi: 10.1002/esp.4637
[6] 刘见礼, 廖小罕, 倪文俭, 等. 顾及单木三维形态的无人机立体影像单木识别算法[J]. 地球信息科学学报, 2021, 23(10):1861-1872.
doi: 10.12082/dqxxkx.2021.210117
Liu J L, Liao X H, Ni W J, et al. Individual tree recognition algorithm of UAV stereo imagery considering three-dimensional morphology of tree[J]. Journal of Geo-Information Science, 2021, 23(10): 1861-1872.
[7] Agüera-Vega F, Carvajal-Ramírez F, Martínez-Carricondo P, et al. Reconstruction of extreme topography from UAV structure from motion photogrammetry[J]. Measurement, 2018, 121: 127-138.
doi: 10.1016/j.measurement.2018.02.062
[8] James M R, Robson S. Straightforward reconstruction of 3D surfaces and topography with a camera:Accuracy and geoscience application[J]. Journal of Geophysical Research(Earth Surface), 2012, 117(f3):3-17.
[9] 张祖勋, 张剑清. 数字摄影测量学(第2版)[M]. 武汉: 武汉大学出版社, 2012.
Zhang Z X, Zhang J Q. Digiital photogrammetry(second edition)[M]. Wuhan: Wuhan University Press, 2012.
[10] Nesbit P, Hugenholtz C. Enhancing UAV-SfM 3D model accuracy in high-relief landscapes by incorporating oblique images[J]. Remote Sensing, 2019, 11(3):239.
doi: 10.3390/rs11030239
[11] Bemis S P, Micklethwaite S, Turner D, et al. Ground-based and UAV-based photogrammetry:A multi-scale,high-resolution mapping tool for structural geology and paleoseismology[J]. Journal of Structural Geology, 2014, 69: 163-178.
doi: 10.1016/j.jsg.2014.10.007
[12] James M R, Robson S. Mitigating systematic error in topographic models derived from UAV and ground-based image networks[J]. Earth Surface Processes and Landforms, 2014, 39(10):1413-1420.
doi: 10.1002/esp.v39.10
[13] Carbonneau P E, Dietrich J T. Cost-effective non-metric photogrammetry from consumer-grade sUAS:Implications for direct georeferencing of structure from motion photogrammetry[J]. Earth Surface Processes and Landforms, 2017, 42(3):473-486.
doi: 10.1002/esp.v42.3
[14] Carvajal-Ramírez F, Agüera-Vega F, Martínez-Carricondo P J. Effects of image orientation and ground control points distribution on unmanned aerial vehicle photogrammetry projects on a road cut slope[J]. Journal of Applied Remote Sensing, 2016, 10(3):034004.
doi: 10.1117/1.JRS.10.034004
[15] Rossi P, Mancini F, Dubbini M, et al. Combining nadir and oblique UAV imagery to reconstruct quarry topography:Methodology and feasibility analysis[J]. European Journal of Remote Sensing, 2017, 50(1):211-221.
doi: 10.1080/22797254.2017.1313097
[16] Smith M W, Vericat D. From experimental plots to experimental landscapes:Topography,erosion and deposition in sub-humid badlands from structure-from-motion photogrammetry[J]. Earth Surface Processes and Landforms, 2015, 40(12):1656-1671.
doi: 10.1002/esp.v40.12
[17] 张纯斌, 杨胜天, 赵长森, 等. 小型消费级无人机地形数据精度验证[J]. 遥感学报, 2018, 22(1):185-195.
Zhang C B, Yang S T, Zhao C S, et al. Topographic data accuracy verification of small consumer UAV[J]. Journal of Remote Sensing, 2018, 22(1):185-195.
[18] Cabo C, Sanz-Ablanedo E, Roca-Pardinas J, et al. Influence of the number and spatial distribution of ground control points in the accuracy of UAV-SfM DEMs:An approach based on generalized additive models[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(12):10618-10627.
doi: 10.1109/TGRS.2021.3050693
[19] 桑文刚, 李娜, 韩峰, 等. 小区域消费级无人机倾斜摄影像控点布设及建模精度研究[J]. 测绘通报, 2019(10):93-96.
doi: 10.13474/j.cnki.11-2246.2019.0325
Sang W G, Li N, Han F, et al. Research on the control point layout scheme for consumption-grade UAV oblique photogrammetry in small areas and modeling accuracy[J]. Bulletin of Surveying and Mapping, 2019(10):93-96.
doi: 10.13474/j.cnki.11-2246.2019.0325
[20] James M R, Robson S, D’oleire-Oltmanns S, et al. Optimising UAV topographic surveys processed with structure-from-motion:Ground control quality,quantity and bundle adjustment[J]. Geomorphology, 2017, 280: 51-66.
doi: 10.1016/j.geomorph.2016.11.021
[21] 国家测绘局. 低空数字航空摄影规范[M]. 北京: 中国测绘出版社, 2010: 15-16.
State Bureau of Surveying and Mapping. Specification for low altitude digital aerial photography[M]. Beijing: Surveying and Mapping Press, 2010: 15-16.
[22] Antoniazza G, Bakker M, Lane S N. Revisiting the morphological method in two dimensions to quantify bed-material transport in braided rivers[J]. Earth Surface Processes and Landforms, 2019, 44(11):2251-2267.
doi: 10.1002/esp.4633
[23] 武汉大学测绘学院测量平差学科组. 误差理论与测量平差基础[M]. 武汉: 武汉大学出版社, 2014.
Surveying adjustment discipline group, School of Surveying and Mapping, Wuhan University. Error theory and basis of measurement adjustment[M]. Wuhan: Wuhan University Press, 2014.
[1] 王珏, 郭振, 张志卫, 徐文学, 许昊. 基于倾斜摄影测量的三维景观指数构建——以山东田横岛为例[J]. 自然资源遥感, 2023, 35(2): 112-121.
[2] 毕卫华, 赵星涛, 杨化超, 卞和方, 张秋昭. 基于智能手机的无人机低空倾斜摄影测量系统及其应用研究[J]. 国土资源遥感, 2021, 33(2): 248-255.
[3] 汪雅, 曾志. 一种近景倾斜摄影的三维建模盲区自动修复技术[J]. 国土资源遥感, 2021, 33(1): 72-77.
[4] 闫驰, 焦润成, 曹颖, 南赟, 王晟宇, 郭学飞. 无人机倾斜摄影在泥石流灾害识别分析中的应用——以北京房山区史家营曹家坊泥石流为例[J]. 国土资源遥感, 2020, 32(4): 251-257.
[5] 连会青, 孟璐, 韩瑞刚, 杨艺, 余标. 基于无人机遥感的地质信息提取——以柳江盆地为例[J]. 国土资源遥感, 2020, 32(3): 136-142.
[6] 余忠迪, 李辉, 巴芳, 王朝阳. 基于消费者级无人机的城市三维建模[J]. 国土资源遥感, 2018, 30(2): 67-72.
[7] 李佳俊, 钟若飞. 轻小型机载LiDAR的航线设计[J]. 国土资源遥感, 2017, 29(2): 97-103.
[8] 周行行, 邹峥嵘, 张云生, 郑特. 顾及几何及颜色信息的倾斜影像立面点云提取[J]. 国土资源遥感, 2016, 28(4): 43-48.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发