Please wait a minute...
 
自然资源遥感  2024, Vol. 36 Issue (2): 116-125    DOI: 10.6046/zrzyyg.2023037
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
云南省植被覆盖时空变化特征及影响因素研究
李益敏1,2(), 冯显杰3, 李媛婷3, 杨雪1, 向倩英3, 计培琨1
1.云南大学地球科学学院,昆明 650500
2.云南省高校国产高分卫星遥感地质工程研究中心,昆明 650500
3.云南大学国际河流与生态安全研究院,昆明 650500
Exploring the spatio-temporal variations and influencing factors of vegetation cover in Yunnan Province
LI Yimin1,2(), FENG Xianjie3, LI Yuanting3, YANG Xue1, XIANG Qianying3, JI Peikun1
1. School of Earth Sciences, Yunnan University, Kunming 650500, China
2. Research Center of Domestic High-resolutellite Remote Sensing Geological Engineering, Kunming 650500, China
3. Institute of International Rivers and Eco-Security, Yunnan University, Kunming 650500, China
全文: PDF(15550 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

云南省物种资源丰富但生态系统十分脆弱,生态环境脆弱性保护与植被覆盖联系紧密。为此,该文采用2000—2022年MOD13Q1数据集的归一化植被指数(normalized difference vegetation index, NDVI),利用最大值合成法(maximum value composite, MVC)、Theil-Sen中位数趋势分析、Mann-Kendall显著性检验方法动态监测植被的时空格局变化。利用相关分析方法探讨植被对地形地貌、气候变化及土地覆被等影响因素的响应。研究表明: 2000—2022年,云南省整体植被覆盖度较高,年均NDVI值在0.74~0.90之间,呈波动上升趋势,其中增加趋势的面积占91.17%,滇东北增长速率最快; 植被覆盖在地域上存在差异,滇东南、滇西南的植被覆盖高于滇西北、滇中、滇东北; 在海拔3 900 m以下,云南省NDVI值比较稳定,3 900 m以上随海拔升高而NDVI值呈减少趋势; 坡度<3°时,NDVI值最低,随着坡度增加,NDVI值先增加后降低; 平面坡向的NDVI值最低,除平面坡向外,其余坡向对植被生长影响较小; 2000—2022年,滇中、滇东南、滇东北的植被覆盖与降水呈正相关,表明降水有利于植被生长; 而滇西南、滇西北与降水呈负相关。全区及各区域的植被覆盖与气温呈正相关,表明气温有利于植被生长。研究结果可为加强云南省生态环境建设和生态管理提供科学依据。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李益敏
冯显杰
李媛婷
杨雪
向倩英
计培琨
关键词 MODIS NDVI植被变化Theil-Sen趋势Mann-Kendall检验相关性云南省    
Abstract

Yunnan Province has abundant species resources but fragile ecosystems, and the ecological vulnerability is closely related to vegetation cover. Hence, based on the normalized difference vegetation index (NDVI) from the MOD13Q1 dataset for 2000—2022, this study dynamically monitored the spatio-temporal variations of vegetation using the maximum value composite (MVC), Theil-Sen median trend analysis, and Mann-Kendall significance test. Moreover, this study delved into the response of vegetation to factors like topography, climate change, and land cover through correlation analysis. The results show that: ① From 2000 to 2022, the overall vegetation coverage of Yunnan Province was relatively high, with average annual NDVI values ranging from 0.74 to 0.90, showing a fluctuating upward trend. Of the whole area, 91.17% exhibited an increasing vegetation coverage trend, with the fastest growth rate seen in northeastern Yunnan; ② Regional differences were observed in vegetation cover, which was higher in southeastern and southwestern Yunnan compared to northwestern, central, and northeastern Yunnan; ③ The NDVI values of Yunnan Province were relatively stable below the altitude of 3 900 m, and decreased with increasing altitude in the case of over 3 900 m; ④ The NDVI values were the lowest with slopes below 3°, and with an increase in slope, they increased first and then decreased; ⑤ The planar slope aspect displayed the lowest NDVI values, and other slope aspects showed minimal impact on vegetation growth; ⑥ From 2000 to 2022, the vegetation cover in central, southeastern, and northeastern Yunnan was positively correlated with precipitation, suggesting that precipitation in these areas was favorable for vegetation growth. However, the vegetation cover in southwestern and northwestern Yunnan showed a negative correlation with precipitation. Additionally, the vegetation cover in the whole region and various areas was positively correlated with temperature, suggesting that temperature is beneficial to vegetation growth. The results of this study will provide a scientific basis for strengthening ecological environment construction and ecological management in Yunnan Province.

Key wordsMODIS NDVI    vegetation change    Theil-Sen trend    Mann-Kendall test    correlation    Yunnan Province
收稿日期: 2023-02-22      出版日期: 2024-06-14
ZTFLH:  Q948  
基金资助:云南省科技厅—云南大学联合基金重点项目“‘天空地’协同的高山峡谷区重大地质灾害隐患识别监测预警研究”(2019FY003017);中国地质调查局项目“重要区域地质灾害监测评价与综合遥感地质调查”(DD20221824);云南大学第二届专业学位研究生实践创新项目“基于多源数据的高海拔山区地表形变动态监测及影响因素”(ZC-22222175)
作者简介: 李益敏(1965-),研究员,主要从事3S技术在山地资源环境和地质灾害中的应用研究。Email: liyimin1965@163.com
引用本文:   
李益敏, 冯显杰, 李媛婷, 杨雪, 向倩英, 计培琨. 云南省植被覆盖时空变化特征及影响因素研究[J]. 自然资源遥感, 2024, 36(2): 116-125.
LI Yimin, FENG Xianjie, LI Yuanting, YANG Xue, XIANG Qianying, JI Peikun. Exploring the spatio-temporal variations and influencing factors of vegetation cover in Yunnan Province. Remote Sensing for Natural Resources, 2024, 36(2): 116-125.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2023037      或      https://www.gtzyyg.com/CN/Y2024/V36/I2/116
Fig.1  高程、坡度、坡向、气温、降水量及土地覆被图
Fig.2  2000—2022年云南省NDVI年际变化
Fig.3  云南省植被覆盖的空间分布
植被分级 面积比例/%
水域或低植被覆盖度 0.19
中低植被覆盖度 1.49
中植被覆盖度 11.78
中高植被覆盖度 57.17
高植被覆盖度 29.37
Tab.1  云南省植被覆盖等级面积占比
Fig.4  云南省Theil-Sen中位数趋势变化图和植被覆盖变化图
S Z NDVI变化趋势特征 面积比例/%
S<0 Z>2.58 极显著减少 1.39
1.96<Z≤2.58 显著减少 0.73
1.65<Z≤1.96 微显著减少 0.52
Z≤1.65 不显著减少 6.03
S=0 Z 无变化 0.16
S>0 Z≤1.65 不显著增加 20.31
1.65<Z≤1.96 微显著增加 6.48
1.96<Z≤2.58 显著增加 14.39
Z>2.58 极显著增加 49.99
Tab.2  2000—2022年云南省植被变化趋势统计
Fig.5  NDVI对海拔、坡度、坡向的响应
Fig.6  云南各区域的年平均气温、年均降水量变化图
Fig.7  NDVI与年均气温、年降水量的相关系数
土地覆被类型 面积占比/% 平均NDVI 平均DEM/m 平均坡度/(°) 平均降水量/mm 平均气温/℃
草地 7.898 0.732 2 273.549 14.195 998.959 12.711
灌木丛 28.841 0.816 1 716.075 13.037 1 196.155 16.007
落叶阔叶林 2.812 0.824 1 708.064 14.838 1 163.265 15.710
常绿阔叶林 14.943 0.865 1 725.792 15.640 1 324.125 16.373
常绿针叶林 28.692 0.826 2 247.938 16.507 1 064.775 13.343
农田 15.647 0.776 1 558.297 10.736 1 096.751 15.728
其他 1.177 0.566 1 743.873 2.917 1 028.880 15.245
Tab.3  土地覆被类型面积占比及与其他因子关系
Fig.8  2000—2021年云南省各州市造林面积
[1] Li J J, Peng S Z, Li Z. Detecting and attributing vegetation changes on China’s Loess Plateau[J]. Agricultural and Forest Meteorology, 2017, 247:260-270.
[2] 杨艳萍, 陈建军, 覃巧婷, 等. 2000—2018年广西植被时空变化及其对地形、气候和土地利用的响应[J]. 农业工程学报, 2021, 37(17):234-241.
Yang Y P, Chen J J, Qin Q T, et al. Temporal and spatial variation of vegetation and its response to topography,climate and land use in Guangxi during 2000—2018[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(17):234-241.
[3] 苗百岭, 梁存柱, 韩芳, 等. 内蒙古主要草原类型植物物候对气候波动的响应[J]. 生态学报, 2016, 36(23):7689-7701.
Miao B L, Liang C Z, Han F, et al. Responses of phenology to climate change over the major grassland types[J]. Acta Ecologica Sinica, 2016, 36(23):7689-7701.
[4] 路洁, 王学凤, 曹永强. 气候和人类活动对辽宁省植被变化的影响[J]. 水利水电科技进展, 2022, 42(4):7-14,38.
Lu J, Wang X F, Cao Y Q. Effects of climate and human activities on vegetation change in Liaoning Province[J]. Advances in Science and Technology of Water Resources, 2022, 42(4):7-14,38.
[5] 金凯, 王飞, 韩剑桥, 等. 1982—2015年中国气候变化和人类活动对植被NDVI变化的影响[J]. 地理学报, 2020, 75(5):961-974.
doi: 10.11821/dlxb202005006
Jin K, Wang F, Han J Q, et al. Contribution of climatic change and human activities to vegetation NDVI change over China during 1982-2015[J]. Acta Geographica Sinica, 2020, 75(5):961-974.
doi: 10.11821/dlxb202005006
[6] 逯金鑫, 周荣磊, 刘洋洋, 等. 黄土高原植被覆被时空动态及其影响因素[J]. 水土保持研究, 2023, 30(2):211-219.
Lu J X, Zhou R L, Liu Y Y, et al. Temporal and spatial dynamics of vegetation cover on the Loess Plateau and its influencing factors[J]. Research of Soil and Water Conservation, 2023, 30(2):211-219.
[7] 武锦辉. 基于多源遥感数据的物种多样性及陆表植被恢复力监测研究[J]. 测绘学报, 2022, 51(8):1826.
doi: 10.11947/j.AGCS.2022.20200539
Wu J H. Monitoring species diversity and measuring vegetation resilience with satellite remote sensing[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(8):1826.
doi: 10.11947/j.AGCS.2022.20200539
[8] 郑朝菊, 曾源, 赵玉金, 等. 近15年中国西南地区植被覆盖度动态变化[J]. 国土资源遥感, 2017, 29(3):128-136.doi:10.6046/gtzyyg.2017.03.19.
Zheng Z J, Zeng Y, Zhao Y J, et al. Monitoring and dynamic analysis of fractional vegetation cover in southwestern China over the past 15 years based on MODIS data[J]. Remote Sensing for Land and Resources, 2017, 29(3):128-136.doi:10.6046/gtzyyg.2017.03.19.
[9] 熊俊楠, 彭超, 程维明, 等. 基于MODIS-NDVI的云南省植被覆盖度变化分析[J]. 地球信息科学学报, 2018, 20(12):1830-1840.
doi: 10.12082/dqxxkx.2018.180371
Xiong J N, Peng C, Cheng W M, et al. Analysis of vegetation coverage change in Yunnan Province based on MODIS-NDVI[J]. Journal of Geo-Information Science, 2018, 20(12):1830-1840.
[10] 赵安周, 刘宪锋, 朱秀芳, 等. 2000—2014年黄土高原植被覆盖时空变化特征及其归因[J]. 中国环境科学, 2016, 36(5):1568-1578.
Zhao A Z, Liu X F, Zhu X F, et al. Spatiotemporal analyses and associated driving forces of vegetation coverage change in the Loess Plateau[J]. China Environmental Science, 2016, 36(5):1568-1578.
[11] 刘哲, 邱炳文, 王壮壮, 等. 2001—2014年间黄土高原植被覆盖状态时空演变分析[J]. 国土资源遥感, 2017, 29(1):192-198.doi:10.6046/gtzyyg.2017.01.29.
Liu Z, Qiu B W, Wang Z Z, et al. Temporal and spatial variation analysis of vegetation cover in the Loess Plateau from 2001 to 2014[J]. Remote Sensing for Land and Resources, 2017, 29(1):192-198.doi:10.6046/gtzyyg.2017.01.29.
[12] Li S S, Yang S N, Liu X F, et al. NDVI-Based analysis on the influence of climate change and human activities on vegetation restoration in the Shaanxi-Gansu-Ningxia region,Central China[J]. Remote Sensing, 2015, 7(9):11163-11182.
[13] Pang G J, Wang X J, Yang M X. Using the NDVI to identify variations in,and responses of,vegetation to climate change on the Tibetan Plateau from 1982 to 2012[J]. Quaternary International, 2017, 444:87-96.
[14] Chu H S, Venevsky S, Wu C, et al. NDVI-based vegetation dynamics and its response to climate changes at Amur-Heilongjiang River Basin from 1982 to 2015[J]. The Science of the Total Environment, 2019, 650(Pt 2):2051-2062.
doi: S0048-9697(18)33557-5 pmid: 30290347
[15] Zoungrana B J, Conrad C, Thiel M, et al. MODIS NDVI trends and fractional land cover change for improved assessments of vegetation degradation in Burkina Faso,West Africa[J]. Journal of Arid Environments, 2018, 153:66-75.
[16] 杨红娟, 张成浩. 基于系统动力学的云南生态文明建设有效路径研究[J]. 中国人口·资源与环境, 2019, 29(2):16-24.
Yang H J, Zhang C H. Research on the effective route of ecological civilization construction in Yunnan Province based on System Dynamics[J]. China Population,Resources and Environment, 2019, 29(2):16-24.
[17] 阮宏威, 于静洁. 1992—2015年中亚五国土地覆盖与蒸散发变化[J]. 地理学报, 2019, 74(7):1292-1304.
doi: 10.11821/dlxb201907002
Ruan H W, Yu J J. Changes in land cover and evapotranspiration in the five Central Asian countries from 1992 to 2015[J]. Acta Geographica Sinica, 2019, 74(7):1292-1304.
doi: 10.11821/dlxb201907002
[18] Yang Y J, Wang S J, Bai X Y, et al. Factors affecting long-term trends in global NDVI[J]. Forests, 2019, 10(5):372.
[19] Gocic M, Trajkovic S. Analysis of changes in meteorological variables using Mann-Kendall and Sen’s slope estimator statistical tests in Serbia[J]. Global and Planetary Change, 2013, 100:172-182.
[20] 孟琪, 武志涛, 杜自强, 等. 基于地理探测器的区域植被覆盖度的定量影响——以京津风沙源区为例[J]. 中国环境科学, 2021, 41(2):826-836.
Meng Q, Wu Z T, Du Z Q, et al. Quantitative influence of regional fractional vegetation cover based on geodetector model:Take the Beijing-Tianjin sand source region as an example[J]. China Environmental Science, 2021, 41(2):826-836.
[21] 黄豪奔, 徐海量, 林涛, 等. 2001—2020年新疆阿勒泰地区归一化植被指数时空变化特征及其对气候变化的响应[J]. 生态学报, 2022, 42(7):2798-2809.
Huang H B, Xu H L, Lin T, et al. Spatio-temporal variation characteristics of NDVI and its response to climate change in the Altay region of Xinjiang from 2001 to 2020[J]. Acta Ecologica Sinica, 2022, 42(7):2798-2809.
[22] 梁守真, 禹定峰, 王猛, 等. 应用遥感时序数据研究植被变化与气候因子的关系——以环渤海地区为例[J]. 国土资源遥感, 2015, 27(3) :114-121.doi:10.6046/gtzyyg.2015.03.19.
Liang S Z, Yu D F, Wang M, et al. Application of remote sensing time — series data to investigate the relationship between vegetation change and climatic factors:A case study of Circum — Bohai Sea area[J]. Remote Sensing for Land and Resources, 2015, 27(3) :114-121.doi:10.6046/gtzyyg.2015.03.19.
[1] 李威洋, 史海静, 聂玮廷, 杨鑫源. 基于地表参数变化的延河流域地表温度时空演变分析[J]. 自然资源遥感, 2024, 36(2): 229-238.
[2] 刘宇佳, 谢诗哲, 杜阳, 严瑾, 南燕云, 温中凯. 结合空间语义注意力的二段式遥感图像修复网络[J]. 自然资源遥感, 2024, 36(1): 58-66.
[3] 庞鑫, 刘珺. 气候变化对亚洲地区植被NDVI变化的影响[J]. 自然资源遥感, 2023, 35(2): 295-305.
[4] 胡盈盈, 戴声佩, 罗红霞, 李海亮, 李茂芬, 郑倩, 禹萱, 李宁. 2001—2015年海南岛橡胶林物候时空变化特征分析[J]. 自然资源遥感, 2022, 34(1): 210-217.
[5] 张秦瑞, 赵良军, 林国军, 万虹麟. 改进遥感生态指数的宜宾市三江汇合区生态环境评价[J]. 自然资源遥感, 2022, 34(1): 230-237.
[6] 姚金玺, 张志, 张焜. 基于GEE的诺木洪洪积扇植被时空变化特征、成因及趋势分析[J]. 自然资源遥感, 2022, 34(1): 249-256.
[7] 于维, 柯福阳, 曹云昌. 基于MODIS_TVDI/GNSS_PWV的云南省干旱特征时空分析[J]. 自然资源遥感, 2021, 33(3): 202-210.
[8] 王川, 范景辉, 林思美, 饶月明, 黄华国. 光学遥感植被指数与SAR遥感参数的相关性及其主要影响因素研究[J]. 国土资源遥感, 2020, 32(2): 130-137.
[9] 张文, 任燕, 马晓琳, 胡艺杰. 基于综合干旱指数的淮河流域土壤含水量反演[J]. 国土资源遥感, 2018, 30(2): 73-79.
[10] 张倩宁, 谭诗腾, 徐柱, 黄泽纯. 基于GLC30数据的斑块级别景观指标适用性及简化研究[J]. 国土资源遥感, 2017, 29(4): 98-105.
[11] 岳梦雪, 秦昆, 张恩兵, 张晔, 曾诚. 基于数据场和密度聚类的高分辨率影像居民区提取[J]. 国土资源遥感, 2017, 29(3): 92-97.
[12] 杨娅楠, 王金亮, 陈光杰, 习晓环, 王成. 抚仙湖流域土地利用格局与水质变化关系[J]. 国土资源遥感, 2016, 28(1): 159-165.
[13] 白淑英, 吴奇, 史建桥, 顾海敏. 青藏高原积雪深度时空分布与地形的关系[J]. 国土资源遥感, 2015, 27(4): 171-178.
[14] 梁守真, 禹定峰, 王猛, 施平. 应用遥感时序数据研究植被变化与气候因子的关系——以环渤海地区为例[J]. 国土资源遥感, 2015, 27(3): 114-121.
[15] 许旭, 任斐鹏, 韩念龙. 2000—2009年河北省生态系统服务价值时空动态遥感监测[J]. 国土资源遥感, 2015, 27(1): 187-193.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发