Please wait a minute...
 
自然资源遥感  2023, Vol. 35 Issue (4): 9-16    DOI: 10.6046/zrzyyg.2022317
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
基于深度学习的多源卫星遥感影像云检测方法
邓丁柱()
内蒙古自治区测绘地理信息中心,呼和浩特 010051
Deep learning-based cloud detection method for multi-source satellite remote sensing images
DENG Dingzhu()
Inner Mongolia Autonomous Region Surveying, Mapping and Geographic Information Center, Hohhot 010051, China
全文: PDF(4339 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

云检测是光学卫星影像预处理过程的重要组成部分,对于后续应用分析具有重要意义。随着光学卫星遥感影像的不断丰富,如何实现海量多源卫星遥感影像的快速云检测是一项具有挑战性的任务。针对传统云检测方法精度低、通用性差等问题,本研究提出了一种多尺度特征融合神经网络模型,称为多源遥感云检测网络(multi-source remote sensing cloud detection network, MCDNet),MCDNet采用U型架构及轻量化骨干网络设计,解码器部分运用多尺度特征融合及通道注意力机制提升模型性能。模型在上万个全球分布的多源卫星影像上训练而成,其中不仅包括谷歌、Landsat等常用卫星数据,还包括GF-1,GF-2和GF-5等国产卫星数据。实验中引入多个经典语义分割模型作为对比参考,实验结果显示该文提出的方法在云检测方面具有更好的性能,且在所有不同类型卫星数据上均取得90%以上的检测精度。模型对未参与训练的哨兵数据进行测试,依然取得较好的云检测效果,表明模型具有良好的鲁棒性,在作为中高分辨率卫星影像云检测通用模型方面具有一定潜力。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
邓丁柱
关键词 云检测深度学习多源遥感国产卫星卷积神经网络注意力机制    
Abstract

Cloud detection, as a crucial step in preprocessing optical satellite images, plays a significant role in the subsequent application analysis. The increasingly enriched optical satellite remote sensing images pose a challenge in achieving quick cloud detection of numerous multi-source satellite remote sensing images. Given that conventional cloud detection exhibits low accuracy and limited universality, this study proposed a multi-scale feature fusion neural network model, i.e., the multi-source remote sensing cloud detection network (MCDNet). The MCDNet comprises a U-shaped architecture and a lightweight backbone network, and its decoder integrates multi-scale feature fusion and a channel attention mechanism to enhance model performance. The MCDNet model was trained using tens of thousands of globally distributed multi-source satellite images, covering commonly used satellite data like Google and Landsat data and domestic satellite data like GF-1, GF-2, and GF-5 data. Several classic semantic segmentation models were used for comparison with the MCDNet model in the experiment. The experimental results indicate that the MCDNet model exhibited superior performance in cloud detection, achieving detection accuracy of over 90% for all types of satellite data. Additionally, the MCDNet model was tested on the Sentinel data that were not used in training, yielding satisfactory cloud detection effects. This demonstrates the MCDNet model’s robustness and potential for use as a general model for cloud detection of medium- to high-resolution satellite images.

Key wordscloud detection    deep learning    multi-source remote sensing    domestic satellite    convolutional neural network    attention mechanism
收稿日期: 2022-08-01      出版日期: 2023-12-21
ZTFLH:  TP79  
  TP751.1  
作者简介: 邓丁柱(1976-),男,高级工程师,主要从事地理信息数据处理、系统建设及遥感应用等研究。Email: nmchddz@126.com
引用本文:   
邓丁柱. 基于深度学习的多源卫星遥感影像云检测方法[J]. 自然资源遥感, 2023, 35(4): 9-16.
DENG Dingzhu. Deep learning-based cloud detection method for multi-source satellite remote sensing images. Remote Sensing for Natural Resources, 2023, 35(4): 9-16.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2022317      或      https://www.gtzyyg.com/CN/Y2023/V35/I4/9
Fig.1  MCDNet网络结构示意图
序号 卫星数据类型 空间分辨率/m 影像尺寸/像素 影像数量/个 切片数量/个 参考文献
1 Google 0.5~1.5 1 280×720 150 600 [25]
2 Landsat5/7/8 30 384×384 8 400 8 400 [40]
3 GF-1 16 1 200×1 300 4 168 5 000 [41]
4 GF-2 4 7 300×6 908 34 1 000 [42]
5 GF-5 30 2 008×2 083 480 5 000 [37]
Tab.1  多源卫星遥感影像云检测数据集
Fig.2  MCDNet网络训练过程曲线
模型 P R F1 OA IoU
SegNet 0.89 0.83 0.86 0.93 0.75
PSPNet 0.87 0.86 0.86 0.93 0.76
HRNetV2 0.94 0.85 0.89 0.94 0.80
UNet 0.85 0.94 0.89 0.95 0.80
BiSeNet 0.84 0.96 0.89 0.95 0.81
DeeplabV3+ 0.91 0.90 0.91 0.95 0.83
MFGNet 0.91 0.91 0.91 0.96 0.84
MCDNet 0.93 0.95 0.94 0.97 0.89
Tab.2  多源遥感影像云检测精度
模型 P R F1 OA IoU
MCDNet-withoutAT 0.92 0.92 0.92 0.96 0.85
MCDNet-Xcep 0.91 0.96 0.93 0.97 0.87
MCDNet-withoutDC 0.92 0.95 0.93 0.97 0.88
MCDNet 0.93 0.95 0.94 0.97 0.89
Tab.3  MCDNet消融实验精度评价
卫星 0%云覆盖 20%云覆盖
真彩色影像 云检测结果 真彩色影像 云检测结果
Landsat
GF-5
GF-2
GF-1
Google
卫星 45%云覆盖 80%云覆盖
真彩色影像 云检测结果 真彩色影像 云检测结果
Landsat
GF-5
GF-2
GF-1
Google
Tab.4  不同云覆盖度的多源遥感真彩色影像及MCDNet云检测结果
Fig.3  MCDNet在哨兵2号数据上的云检测结果
[1] King M D, Platnick S, Menzel W P, et al. Spatial and temporal distribution of clouds observed by MODIS onboard the Terra and Aqua satellites[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(7):3826-3852.
doi: 10.1109/TGRS.2012.2227333
[2] Yu J, Yan B. Efficient solution of large-scale domestic hyperspectral data processing and geological application[C]// 2017 International Workshop on Remote Sensing with Intelligent Processing (RSIP).IEEE, 2017:1-4.
[3] Irish R R, Barker J L, Goward S N, et al. Characterization of the Landsat7 ETM+ automated cloud-cover assessment (ACCA) algorithm[J]. Photogrammetric Engineering and Remote Sensing, 2006, 72(10):1179-1188.
doi: 10.14358/PERS.72.10.1179
[4] Zhu Z, Woodcock C E. Object-based cloud and cloud shadow detection in Landsat imagery[J]. Remote Sensing of Environment, 2012, 118:83-94.
doi: 10.1016/j.rse.2011.10.028
[5] Zhu Z, Wang S, Woodcock C E. Improvement and expansion of the Fmask algorithm:Cloud,cloud shadow,and snow detection for Landsats4-7,8,and Sentinel-2 images[J]. Remote Sensing of Environment, 2015, 159:269-277.
doi: 10.1016/j.rse.2014.12.014
[6] Rossow W B, Garder L C. Cloud detection using satellite measurements of infrared and visible radiances for ISCCP[J]. Journal of Climate, 1993, 6(12):2341-2369.
doi: 10.1175/1520-0442(1993)006<2341:CDUSMO>2.0.CO;2
[7] Gesell G. An algorithm for snow and ice detection using AVHRR data:An extension to the APOLLO software package[J]. International Journal of Remote Sensing, 1989, 10(4/5):897-905.
doi: 10.1080/01431168908903929
[8] Stowe L L, McClain E P, Carey R, et al. Global distribution of cloud cover derived from NOAA/AVHRR operational satellite data[J]. Advances in Space Research, 1991, 11(3):51-54.
[9] Qiu S, He B, Zhu Z, et al. Improving Fmask cloud and cloud shadow detection in mountainous area for Landsats4-8 images[J]. Remote Sensing of Environment, 2017, 199:107-119.
doi: 10.1016/j.rse.2017.07.002
[10] Qiu S, Zhu Z, He B. Fmask 4.0:Improved cloud and cloud shadow detection in Landsats4-8 and Sentinel-2 imagery[J]. Remote Sensing of Environment, 2019, 231:111205.
doi: 10.1016/j.rse.2019.05.024
[11] Zhu X, Helmer E H. An automatic method for screening clouds and cloud shadows in optical satellite time series in cloudy regions[J]. Remote Sensing of Environment, 2018, 214:135-153.
doi: 10.1016/j.rse.2018.05.024
[12] Frantz D, Haß E, Uhl A, et al. Improvement of the Fmask algorithm for Sentinel-2 images:Separating clouds from bright surfaces based on parallax effects[J]. Remote Sensing of Environment, 2018, 215:471-481.
doi: 10.1016/j.rse.2018.04.046
[13] Bian J, Li A, Liu Q, et al. Cloud and snow discrimination for CCD images of HJ-1A/B constellation based on spectral signature and spatio-temporal context[J]. Remote Sensing, 2016, 8(1):31.
doi: 10.3390/rs8010031
[14] 葛曙乐, 董胜越, 孙根云, 等. 一种适用于高分五号全谱段光谱成像仪影像的云检测算法[J]. 上海航天, 2019, 36(s2):204-209.
Ge S L, Dong S Y, Sun G Y, et al. Cloud detection algorithm for images of visual and infrared multispectral imager[J]. Aerospace Shanghai, 2019, 36(s2):204-209.
[15] Zhan Y, Wang J, Shi J, et al. Distinguishing cloud and snow in satellite images via deep convolutional network[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(10):1785-1789.
doi: 10.1109/LGRS.2017.2735801
[16] Wang L, Chen Y, Tang L, et al. Object-based convolutional neural networks for cloud and snow detection in high-resolution multispectral imagers[J]. Water, 2018, 10(11):1666.
doi: 10.3390/w10111666
[17] Oishi Y, Ishida H, Nakamura R. A new Landsat8 cloud discrimination algorithm using thresholding tests[J]. International Journal of Remote Sensing, 2018, 39(23):9113-9133.
doi: 10.1080/01431161.2018.1506183
[18] Shao Z, Pan Y, Diao C, et al. Cloud detection in remote sensing images based on multiscale features-convolutional neural network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(6):4062-4076.
doi: 10.1109/TGRS.36
[19] Hong Y, Hsu K L, Sorooshian S, et al. Precipitation estimation from remotely sensed imagery using an artificial neural network cloud classification system[J]. Journal of Applied Meteorology, 2004, 43(12):1834-1853.
doi: 10.1175/JAM2173.1
[20] Hall D K, Riggs G A, Salomonson V V. Development of methods for mapping global snow cover using moderate resolution imaging spectroradiometer data[J]. Remote Sensing of Environment, 1995, 54(2):127-140.
doi: 10.1016/0034-4257(95)00137-P
[21] Ghasemian N, Akhoondzadeh M. Introducing two random forest based methods for cloud detection in remote sensing images[J]. Advances in Space Research, 2018, 62(2):288-303.
doi: 10.1016/j.asr.2018.04.030
[22] Egli S, Thies B, Bendix J. A hybrid approach for fog retrieval based on a combination of satellite and ground truth data[J]. Remote Sensing, 2018, 10(4):628.
doi: 10.3390/rs10040628
[23] Lee Y, Wahba G, Ackerman S A. Cloud classification of satellite radiance data by multicategory support vector machines[J]. Journal of Atmospheric and Oceanic Technology, 2004, 21(2):159-169.
doi: 10.1175/1520-0426(2004)021<0159:CCOSRD>2.0.CO;2
[24] Ishida H, Oishi Y, Morita K, et al. Development of a support vector machine based cloud detection method for MODIS with the adjustability to various conditions[J]. Remote Sensing of Environment, 2018, 205:390-407.
doi: 10.1016/j.rse.2017.11.003
[25] Li Z, Shen H, Cheng Q, et al. Deep learning based cloud detection for medium and high resolution remote sensing images of different sensors[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 150:197-212.
doi: 10.1016/j.isprsjprs.2019.02.017
[26] Ma L, Liu Y, Zhang X, et al. Deep learning in remote sensing applications:A meta-analysis and review[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 152:166-177.
doi: 10.1016/j.isprsjprs.2019.04.015
[27] Yu J, Zhang L, Li Q, et al. 3D autoencoder algorithm for lithological mapping using ZY-1 02D hyperspectral imagery:A case study of Liuyuan region[J]. Journal of Applied Remote Sensing, 2021, 15(4):042610.
[28] Tsagkatakis G, Aidini A, Fotiadou K, et al. Survey of deep-learning approaches for remote sensing observation enhancement[J]. Sensors, 2019, 19(18):3929.
doi: 10.3390/s19183929
[29] Yang J, Guo J, Yue H, et al. CDnet:CNN-based cloud detection for remote sensing imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(8):6195-6211.
doi: 10.1109/TGRS.36
[30] Jeppesen J H, Jacobsen R H, Inceoglu F, et al. A cloud detection algorithm for satellite imagery based on deep learning[J]. Remote Sensing of Environment, 2019, 229:247-259.
doi: 10.1016/j.rse.2019.03.039
[31] Drönner J, Korfhage N, Egli S, et al. Fast cloud segmentation using convolutional neural networks[J]. Remote Sensing, 2018, 10(11):1782.
doi: 10.3390/rs10111782
[32] 刘广进, 王光辉, 毕卫华, 等. 基于DenseNet与注意力机制的遥感影像云检测算法[J]. 自然资源遥感, 2022, 34(2):88-96.doi:10.6046/zrzyyg.2021128.
Liu G J, Wang G H, Bi W H, et al. Cloud detection algorithm of remote sensing image based on DenseNet and attention mechanism[J]. Remote Sensing for Natural Resources, 2022, 34(2):88-96.doi:10.6046/zrzyyg.2021128.
[33] Chai D, Newsam S, Zhang H K, et al. Cloud and cloud shadow detection in Landsat imagery based on deep convolutional neural networks[J]. Remote Sensing of Environment, 2019, 225:307-316.
doi: 10.1016/j.rse.2019.03.007
[34] Mohajerani S, Saeedi P. Cloud-net+:A cloud segmentation CNN for Landsat8 remote sensing imagery optimized with filtered jaccard loss function[J/OL]. arXiv, 2020(2020-01-23)[2021-04-23]. https://arxiv.org/abs/2001.08768v1.
[35] Guo Z S, Li C H, Wang Z M, et al. A cloud boundary detection scheme combined with ASLIC and CNN using ZY-3,GF-1/2 satellite imagery[J]. International Archives of the Photogrammetry,Remote Sensing and Spatial Information Sciences, 2018, 42(3):455-458.
[36] Zi Y, Xie F, Jiang Z. A cloud detection method for Landsat8 images based on PCANet[J]. Remote Sensing, 2018, 10(6):877.
doi: 10.3390/rs10060877
[37] Yu J C, Li Y, Zheng X, et al. An effective cloud detection method for Gaofen-5 images via deep learning[J]. Remote Sensing, 2020, 12(13):2106.
doi: 10.3390/rs12132106
[38] 仇一帆, 柴登峰. 无人工标注数据的Landsat影像云检测深度学习方法[J]. 国土资源遥感, 2021, 33(1): 102-107.doi:10.6046/gtzyyg.2020090.
Qiu Y F, Chai D F. A deep learning method for Landsat image cloud detection without manually labeled data[J]. Remote Sensing for Land and Resources, 2021, 33(1): 102-107.doi:10.6046/gtzyyg.2020090.
[39] Ronneberger O, Fischer P, Brox T. U-net:Convolutional networks for biomedical image segmentation[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham:Springer, 2015:234-241.
[40] Mohajerani S, Saeedi P. Cloud-Net:An end-to-end cloud detection algorithm for Landsat8 imagery[C]// 2019 IEEE International Geoscience and Remote Sensing Symposium.IEEE, 2019: 1029-1032.
[41] Wu X, Shi Z, Zou Z. A geographic information-driven method and a new large scale dataset for remote sensing cloud/snow detection[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 174:87-104.
doi: 10.1016/j.isprsjprs.2021.01.023
[42] He Q, Sun X, Yan Z, et al. DABNet:Deformable contextual and boundary-weighted network for cloud detection in remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60:5601216.
[43] Badrinarayanan V, Kendall A, Cipolla R. SegNet:A deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 39:2481-2495.
doi: 10.1109/TPAMI.34
[44] Zhao H, Shi J, Qi X, et al. Pyramid scene parsing network[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition, 2017:6230-6239.
[45] Yu C, Wang J, Peng C, et al. Bisenet:Bilateral segmentation network for real-time semantic segmentation[C]// 15th European Conference on Computer Vision (ECCV), 2018:334-349.
[46] Sun K, Zhao Y, Jiang B, et al. High-resolution representations for labeling pixels and regions[J/OL]. arXiv, 2019(2019-04-09)[2021-04-23]. https://arxiv.org/abs/1904.04514.pdf.
[47] Chen L C, Zhu Y, Papandreou G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]// 15th European Conference on Computer Vision (ECCV), 2018:833-851.
[1] 李新同, 史岚, 陈多妍. 基于深度学习的闽浙赣GPM降水产品降尺度方法[J]. 自然资源遥感, 2023, 35(4): 105-113.
[2] 陈笛, 彭秋志, 黄培依, 刘雅璇. 采用注意力机制与改进YOLOv5的光伏用地检测[J]. 自然资源遥感, 2023, 35(4): 90-95.
[3] 刘涵薇, 陈富龙, 廖亚奥. 明长城(北京段)遥感动态监测与影响驱动分析[J]. 自然资源遥感, 2023, 35(4): 255-263.
[4] 刘立, 董先敏, 刘娟. 顾及地学特征的遥感影像语义分割模型性能评价方法[J]. 自然资源遥感, 2023, 35(3): 80-87.
[5] 牛祥华, 黄微, 黄睿, 蒋斯立. 基于注意力特征融合的高保真遥感图像薄云去除[J]. 自然资源遥感, 2023, 35(3): 116-123.
[6] 伍炜超, 叶发旺. 面向多背景环境的Sentinel-2云检测[J]. 自然资源遥感, 2023, 35(3): 124-133.
[7] 张仙, 李伟, 陈理, 杨昭颖, 窦宝成, 李瑜, 陈昊旻. 露天开采矿区要素遥感提取研究进展及展望[J]. 自然资源遥感, 2023, 35(2): 25-33.
[8] 刁明光, 刘勇, 郭宁博, 李文吉, 江继康, 王云霄. 基于Mask R-CNN的遥感影像疏林地智能识别方法[J]. 自然资源遥感, 2023, 35(2): 97-104.
[9] 郑宗生, 刘海霞, 王振华, 卢鹏, 沈绪坤, 唐鹏飞. 改进3D-CNN的高光谱图像地物分类方法[J]. 自然资源遥感, 2023, 35(2): 105-111.
[10] 邱磊, 张学志, 郝大为. 基于深度学习的视频SAR动目标检测与跟踪算法[J]. 自然资源遥感, 2023, 35(2): 157-166.
[11] 胡建文, 汪泽平, 胡佩. 基于深度学习的空谱遥感图像融合综述[J]. 自然资源遥感, 2023, 35(1): 1-14.
[12] 赵凌虎, 袁希平, 甘淑, 胡琳, 丘鸣语. 改进Deeplabv3+的高分辨率遥感影像道路提取模型[J]. 自然资源遥感, 2023, 35(1): 107-114.
[13] 张可, 张庚生, 王宁, 温静, 李宇, 杨俊. 基于遥感和深度学习的输电线路地表水深预测[J]. 自然资源遥感, 2023, 35(1): 213-221.
[14] 孙盛, 蒙芝敏, 胡忠文, 余旭. 多尺度轻量化CNN在SAR图像地物分类中的应用[J]. 自然资源遥感, 2023, 35(1): 27-34.
[15] 金远航, 徐茂林, 郑佳媛. 基于改进YOLOv4-tiny的无人机影像枯死树木检测算法[J]. 自然资源遥感, 2023, 35(1): 90-98.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发