Please wait a minute...
 
自然资源遥感  2024, Vol. 36 Issue (1): 154-161    DOI: 10.6046/zrzyyg.2022464
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
利用GEE云平台实现三峡库区滑坡危险性动态分析
宋英旭1,2(), 邹昱嘉2, 叶润青3, 贺志霞1, 王宁涛3()
1.江西省地震局江西省防震减灾与工程地质灾害探测工程研究中心(东华理工大学),南昌 330013
2.东华理工大学信息工程学院,南昌 330013
3.中国地质调查局武汉地质调查中心(中南地质科技创新中心),武汉 430205
Dynamic analysis of landslide hazards in the Three Gorges Reservoir area based on Google Earth Engine
SONG Yingxu1,2(), ZOU Yujia2, YE Runqing3, HE Zhixia1, WANG Ningtao3()
1. Jiangxi Province Earthquake Prevention and Disaster Mitigation and Engineering Geological Hazard Detection Engineering Research Center (East China University of Science and Technology), Jiangxi Seismological Bureau, Nanchang 330013, China
2. School of Information Engineering, East China University of Technology, Nanchang 330013, China
3. Wuhan Geological Survey, China Geological Survey Center (Central South Geological Science and Technology Innovation Center), Wuhan 430205, China
全文: PDF(7247 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

传统的遥感监测手段受限于数据的可用性以及计算性能,往往无法满足大区域的滑坡灾害监测研究。为此,该文利用谷歌地球引擎(Google Earth Engine,GEE)云平台建立了三峡库区滑坡危险性动态评价模型,依托GEE云平台海量的存储数据和强大的算力,实现了三峡库区的滑坡危险性动态评价。首先,采用坡度、坡向、归一化植被指数、归一化水体指数和地质构造等因子,通过加权的梯度提升决策树(weighted gradient boosting decision tree, WGBDT)模型生成了滑坡易发性分区图; 然后,利用全球降雨测量(Global Precipitation Measurement,GPM)数据,研究三峡库区诱发滑坡的降雨阈值,建立了降雨分级标准,构建了联合降雨和滑坡易发性的滑坡危险性评价模型; 最后,以三峡库区“8·31”降雨过程为研究对象,逐日生成三峡库区滑坡危险性分布图,得到了滑坡危险性的时空变化趋势。利用GEE 提供的一系列的数据处理和分析工具,可以用来分析三峡库区滑坡地质灾害相关的数据,并提供滑坡危险性近实时的监测和预警信息,为政府部门防灾减灾政策的制定提供决策依据。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
宋英旭
邹昱嘉
叶润青
贺志霞
王宁涛
关键词 遥感滑坡降雨Google Earth Engine (GEE)三峡库区    
Abstract

Conventional remote sensing monitoring techniques, constrained by data availability and computational capacity, often fall short of the research requirements of extensive landslide disaster monitoring. This study established a dynamic assessment model for landslide hazards in the Three Gorges Reservoir area based on cloud computing platform Google Earth Engine (GEE), achieving dynamic assessment of landslide hazards in the area under the support of the massive data storage and robust computational capabilities of GEE. First, based on factors such as slope, slope aspect, normalized difference vegetation index (NDVI), normalized differential water index (NDWI), and geological structures, a landslide susceptibility zone map was established using a weighted gradient boosting decision tree (WGBDT) model. Then, the rainfall threshold inducing landslides in the Three Gorges Reservoir area was determined based on the Global Precipitation Measurement (GPM) data from the National Aeronautics and Space Administration (NASA). Subsequently, the rainfall classification criteria and a landslide hazard assessment model were established by combining rainfall and landslide susceptibility. Finally, focusing on the rainfall on August 31 in the Three Gorges Reservoir area, the daily distribution maps of landslide hazards in the Three Gorges Reservoir area were plotted, yielding the spatio-temporal variation trend of landslide hazards. In sum, the data processing and analysis tools of GEE allow for the analysis of landslide-related data of the Three Gorges Reservoir area, thus providing nearly real-time monitoring and early warning information for landslide hazards and offering a basis for the formulation of disaster prevention and mitigation policies.

Key wordsremote sensing    landslide    rainfall    Google Earth Engine (GEE)    Three Gorges Reservoir area
收稿日期: 2022-12-02      出版日期: 2024-03-13
ZTFLH:  TP79  
基金资助:江西省防震减灾与工程地质灾害探测工程研究中心开放基金资助项目“地理数据云平台支持下的地质灾害危险性动态评价研究”(SDGD202203);江西省教育厅科学技术研究项目“基于地学大数据的滑坡危险性动态评价研究”(GJJ200748)
通讯作者: 王宁涛(1982-),男,硕士,高级工程师,主要从事水工环地质调查与研究。Email: wnt113@126.com
作者简介: 宋英旭(1989-),男,博士,讲师,主要从事地质灾害危险性评价方向的研究。Email: yxsong@ecut.edu.cn
引用本文:   
宋英旭, 邹昱嘉, 叶润青, 贺志霞, 王宁涛. 利用GEE云平台实现三峡库区滑坡危险性动态分析[J]. 自然资源遥感, 2024, 36(1): 154-161.
SONG Yingxu, ZOU Yujia, YE Runqing, HE Zhixia, WANG Ningtao. Dynamic analysis of landslide hazards in the Three Gorges Reservoir area based on Google Earth Engine. Remote Sensing for Natural Resources, 2024, 36(1): 154-161.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2022464      或      https://www.gtzyyg.com/CN/Y2024/V36/I1/154
Fig.1  降雨诱发滑坡风险动态评价流程
Fig.2  2014年“8·31”暴雨诱发滑坡遥感解译分布
Fig.3  部分三峡库区地质灾害易发性评价因子
Fig.4  三峡库区滑坡易发性分布
易发性等级
(7 d累积降雨量)
较高 较低
大量发生(>200 mm)
群体发生((170,200] mm)
局部发生((140,170] mm)
偶然发生((100,140] mm)
不发生(≤100 mm)
Tab.1  基于降雨量阈值的地质灾害危险性分级
Fig.5  三峡库区2014年“8·31”暴雨诱发滑坡危险性区划
[1] 黄润秋. 20世纪以来中国的大型滑坡及其发生机制[J]. 岩石力学与工程学报, 2007, 26(3):433-454.
Huang R Q. Large-scale landslides and their sliding mechanisms in China since the 20th century[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(3):433-454.
[2] 唐扬, 殷坤龙, 夏辉. 前期含水率对浅层滑坡降雨入渗及稳定性影响研究[J]. 地质科技情报, 2017, 36(5):204-208,237.
Tang Y, Yin K L, Xia H. Effects of initial water content on the rainfall infiltration and stability of shallow landslide[J]. Geological Science and Technology Information, 2017, 36(5):204-208,237.
[3] 彭令. 三峡库区滑坡灾害风险评估研究[D]. 武汉: 中国地质大学(武汉), 2013.
Peng L. Landslide disaster risk assessment in the Three Gorges reservoir area[D]. Wuhan: China University of Geosciences (Wuhan), 2013.
[4] 赵鹏, 杨沛霖, 蒋莉, 等. 渝东北地区强降雨诱发地质灾害险情分析[J]. 长江科学院院报, 2017, 34(10):50-56.
doi: 10.11988/ckyyb.20160309
Zhao P, Yang P L, Jiang L, et al. Situation of geologic hazards induced by heavy rainfall in northeast Chongqing[J]. Journal of Yangtze River Scientific Research Institute, 2017, 34(10):50-56.
[5] 刘志中, 宋英旭, 叶润青. 渝东北2014年“8·31”暴雨诱发滑坡遥感解译与分析[J]. 自然资源遥感, 2021, 33(4):192-199.doi:10.6046/zrzyyg.2020348.
Liu Z Z, Song Y X, Ye R Q. An analysis of rainstorm-induced landslides in northeast Chongqing on August 31,2014 based on interpretation of remote sensing images[J]. Remote Sensing of Natural Resources, 2021, 33(4): 192-199.doi:10.6046/zrzyyg.2020348.
[6] Liu J P, Mason P J, Clerici N, et al. Landslide hazard assessment in the Three Gorges area of the Yangtze River using ASTER imagery[C]// IGARSS 2003.2003 IEEE International Geoscience and Remote Sensing Symposium.Proceedings.Toulouse,France.IEEE, 2004:1302-1304.
[7] Fourniadis I G, Liu J G, Mason P J. Regional assessment of landslide impact in the Three Gorges area,China,using ASTER data:Wushan-Zigui[J]. Landslides, 2007, 4(3):267-278.
doi: 10.1007/s10346-007-0080-5
[8] Hong Y, Adler R, Huffman G. Evaluation of the potential of NASA multi-satellite precipitation analysis in global landslide hazard assessment[J]. Geophysical Research Letters, 2006, 33(22):L22402.
[9] Hong Y, Adler R, Huffman G. Use of satellite remote sensing data in the mapping of global landslide susceptibility[J]. Natural Hazards, 2007, 43(2):245-256.
doi: 10.1007/s11069-006-9104-z
[10] Kirschbaum D B, Adler R, Hong Y, et al. A global landslide catalog for hazard applications:Method,results,and limitations[J]. Natural Hazards, 2010, 52(3):561-575.
doi: 10.1007/s11069-009-9401-4
[11] Kirschbaum D, Stanley T. Satellite-based assessment of rainfall-triggered landslide hazard for situational awareness[J]. Earth’s Future, 2018, 6(3):505-523.
doi: 10.1002/eft2.v6.3
[12] Nadim F, Kjekstad O. Assessment of global high-risk landslide disaster hotspots[M]//Landslides-Disaster Risk Reduction.Berlin: Springer Berlin Heidelberg, 2009:213-221.
[13] Farahmand A, Aghakouchak A. A satellite-based global landslide model[J]. Natural Hazards and Earth System Sciences, 2013, 13(5):1259-1267.
[14] Liao Z, Hong Y, Kirschbaum D, et al. Assessment of shallow landslides from Hurricane Mitch in central America using a physically based model[J]. Environmental Earth Sciences, 2012, 66(6):1697-1705.
doi: 10.1007/s12665-011-0997-9
[15] Kirschbaum D B, Stanley T, Simmons J. A dynamic landslide hazard assessment system for Central America and Hispaniola[J]. Natural Hazards and Earth System Sciences, 2015, 15(10):2257-2272.
[16] Chen W, Chen Y, Tsangaratos P, et al. Combining evolutionary algorithms and machine learning models in landslide susceptibility assessments[J]. Remote Sensing, 2020, 12(23):3854.
doi: 10.3390/rs12233854
[17] Tamiminia H, Salehi B, Mahdianpari M, et al. Google Earth Engine for geo-big data applications:A meta-analysis and systematic review[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 164:152-170.
doi: 10.1016/j.isprsjprs.2020.04.001
[18] Amani M, Ghorbanian A, Ali Ahmadi S, et al. Google earth engine cloud computing platform for remote sensing big data applications:A comprehensive review[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13:5326-5350.
doi: 10.1109/JSTARS.4609443
[19] 王玲玉, 陈全, 吴跃, 等. 基于地块级时序NDVI的喀斯特山区撂荒地特征精准识别[J]. 国土资源遥感, 2020, 32(3):23-31.doi: 10.6046/gtzyyg.2020.03.04.
Wang L Y, Chen Q, Wu Y, et al. Accurate recognition and extraction of Karst abandoned land features based on cultivated land parcels and time series NDVI[J]. Remote Sensing for Land and Resources, 2020, 32(3):23-31.doi: 10.6046/gtzyyg.2020.03.04.
[20] 王碧晴, 韩文泉, 许驰. 基于图像分割和NDVI时间序列曲线分类模型的冬小麦种植区域识别与提取[J]. 国土资源遥感, 2020, 32(2):219-225.doi:10.6046/gtzyyg.2020.02.28.
Wang B Q, Han W Q, Xu C. Winter wheat planting area identification and extraction based on image segmentation and NDVI time series curve classification model[J]. Remote Sensing for Land and Resources, 2020, 32(2):219-225.doi:10.6046/gtzyyg.2020.02.28.
[21] 徐嘉昕, 房世波, 张廷斌, 等. 2000—2016年三江源区植被生长季NDVI变化及其对气候因子的响应[J]. 国土资源遥感, 2020, 32(1):237-246.doi:10.6046/gtzyyg.2020.01.32.
Xu J X, Fang S B, Zhang T B, et al. NDVI changes and its correlation with climate factors of the Three River-Headwater region in growing seasons during 2000-2016[J]. Remote Sensing for Land and Resources, 2020, 32(1):237-246.doi:10.6046/gtzyyg.2020.01.32.
[22] 王琳, 谢洪波, 文广超, 等. 基于Landsat8的含蓝藻湖泊水体信息提取方法研究[J]. 国土资源遥感, 2020, 32(4):130-136.doi:10.6046/gtzyyg.2019351.
Wang L, Xie H B, Wen G C, et al. A study on water information extraction method of cyanobacteria lake based on Landsat8[J]. Remote Sensing for Land and Resources, 2020, 32(4):130-136.doi:10.6046/gtzyyg.2019351.
[23] 王大钊, 王思梦, 黄昌. Sentinel-2和Landsat8影像的四种常用水体指数地表水体提取对比[J]. 国土资源遥感, 2019, 31(3):157-165.doi:10.6046/gtzyyg.2019.03.20.
Wang D Z, Wang S M, Huang C. Comparison of Sentinel-2 imagery with Landsat8 imagery for surface water extraction using four common water indexes[J]. Remote Sensing for Land and Resources, 2019, 31(3):157-165.doi:10.6046/gtzyyg.2019.03.20.
[24] 童立强, 郭兆成. 典型滑坡遥感影像特征研究[J]. 国土资源遥感, 2013, 25(1):86-92.doi:10.6046/gtzyyg.2013.01.16.
Tong L Q, Guo Z C. A study of remote sensing image features of typical landslides[J]. Remote Sensing for Land and Resources, 2013, 25(1):86-92.doi:10.6046/gtzyyg.2013.01.16.
[25] 杨昭颖, 韩灵怡, 郑向向, 等. 基于卷积神经网络的遥感影像及DEM滑坡识别——以黄土滑坡为例[J]. 自然资源遥感, 2022, 34(2):224-230.doi:10.6046/zrzyyg.2021204.
Yang Z Y, Han L Y, Zheng X X, et al. Landslide identification using remote sensing images and DEM based on convolutional neural network:A case study of loess landslide[J]. Remote Sensing for Natural Resources, 2022, 34(2):224-230.doi:10.6046/zrzyyg.2021204.
[26] 蒋培荡. 遥感技术在江西永丰县地质灾害调查中的应用[J]. 中国地质灾害与防治学报, 2015, 26(1):82-86,107.
Jiang P D. Remote sensing technology investigation of geological disasters in Yongfeng County Jiangxi Province[J]. The Chinese Journal of Geological Hazard and Control, 2015, 26(1):82-86, 107.
[27] 金鼎坚, 支晓栋, 王建超, 等. 面向地质灾害调查的无人机遥感影像处理软件比较[J]. 国土资源遥感, 2016, 28(1):183-189.doi:10.6046/gtzyyg.2016.01.27.
Jin D J, Zhi X D, Wang J C, et al. Comparison of UAV remote sensing image processing software for geological disasters monitoring[J]. Remote Sensing for Land and Resources, 2016, 28(1):183-189.doi:10.6046/gtzyyg.2016.01.27.
[28] 赵银鑫, 金正鑫, 马玉学. 遥感调查应用于地质灾害调查的工作方法与技术要求——以宁夏盐池县地质灾害调查为例[J]. 宁夏工程技术, 2014, 13(3):196-200.
Zhao Y X, Jin Z X, Ma Y X. Remote sensing investigation in geological disasters investigation method and technique requirements-a case study of geological disasters investigation in Yanchi County of Ningxia[J]. Ningxia Engineering Technology, 2014, 13(3):196-200.
[29] 徐潇宇. 三峡库区地质灾害防治系统运行机制研究[D]. 中国地质大学, 2013.
Xu X Y. Research on the operation mechanism of the system dealing with the prevention and control of geological hazards in three gorges reservoir area[D]. Wuhan: China University of Geosciences, 2013.
[30] Zhang H, Song Y, Xu S, et al. Combining a class-weighted algorithm and machine learning models in landslide susceptibility mapping:A case study of Wanzhou section of the Three Gorges Reservoir,China[J]. Computers & Geosciences, 2022, 158:104966.
doi: 10.1016/j.cageo.2021.104966
[1] 蒋瑞瑞, 甘甫平, 郭艺, 闫柏琨. 土壤水分多源卫星遥感联合反演研究进展[J]. 自然资源遥感, 2024, 36(1): 1-13.
[2] 刘晓亮, 王志华, 邢江河, 周睿, 杨晓梅, 刘岳明, 张俊瑶, 孟丹. 融合多源地理数据与高分辨率遥感影像的尾矿库识别与监测——以云南省个旧市为例[J]. 自然资源遥感, 2024, 36(1): 103-109.
[3] 蔡建澳, 明冬萍, 赵文祎, 凌晓, 张雨, 张星星. 基于综合遥感的察隅县滑坡隐患识别及致灾机理分析[J]. 自然资源遥感, 2024, 36(1): 128-136.
[4] 陆妍玲, 黄娅琦, 周俊芬, 王杰, 韦晶闪. 基于夜光遥感数据的广西县域农村多维脱贫分析[J]. 自然资源遥感, 2024, 36(1): 169-178.
[5] 李世杰, 冯徽徽, 王珍, 杨卓琳, 王姝. 2010—2019年间洞庭湖流域生态环境状况时空动态特征及影响因素[J]. 自然资源遥感, 2024, 36(1): 179-188.
[6] 周小迦. 丘陵地带耕地撂荒遥感监测应用研究[J]. 自然资源遥感, 2024, 36(1): 235-241.
[7] 刘宇佳, 谢诗哲, 杜阳, 严瑾, 南燕云, 温中凯. 结合空间语义注意力的二段式遥感图像修复网络[J]. 自然资源遥感, 2024, 36(1): 58-66.
[8] 卢献健, 张焕铃, 晏红波, 黎振宝, 郭子扬. 协同Sentinel-1/2多特征优选的甘蔗提取方法[J]. 自然资源遥感, 2024, 36(1): 86-94.
[9] 王煜淼, 李胜, 东春宇, 杨刚. 多特征参数支持的红树林遥感信息提取——以广东省为例[J]. 自然资源遥感, 2024, 36(1): 95-102.
[10] 田钊, 梁艾琳. 居民碳排放的遥感监测与分析[J]. 自然资源遥感, 2023, 35(4): 43-52.
[11] 余绍淮, 徐乔, 余飞. 联合光学和SAR遥感影像的山区公路滑坡易发性评价方法[J]. 自然资源遥感, 2023, 35(4): 81-89.
[12] 邓丁柱. 基于深度学习的多源卫星遥感影像云检测方法[J]. 自然资源遥感, 2023, 35(4): 9-16.
[13] 陈笛, 彭秋志, 黄培依, 刘雅璇. 采用注意力机制与改进YOLOv5的光伏用地检测[J]. 自然资源遥感, 2023, 35(4): 90-95.
[14] 殷亚秋, 王敬, 杨金中, 朱晓华, 王立威, 邢宇, 李天祺, 余洋. 海南省国家级海洋自然保护区2016—2020年人类活动影响遥感监测与评价[J]. 自然资源遥感, 2023, 35(4): 149-158.
[15] 李光哲, 王浩, 曹银璇, 张晓宇, 宁晓刚. 长株潭城市群生态环境质量时空演变及影响因素分析[J]. 自然资源遥感, 2023, 35(4): 244-254.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发