Please wait a minute...
 
自然资源遥感  2024, Vol. 36 Issue (2): 257-267    DOI: 10.6046/zrzyyg.2022467
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
联合SAR影像相位和幅度信息的多形变量级滑坡监测——以金沙江白格滑坡为例
杨帆1(), 马志刚2, 文艳2, 董杰3(), 姜清辉4
1.武汉大学测绘遥感信息工程国家重点实验室, 武汉 430079
2.四川省国土空间修复与地质灾害防治研究院, 成都 610084
3.武汉大学遥感信息工程学院, 武汉 430079
4.武汉大学土木建筑工程学院,武汉 430079
Monitoring a landslide with a multi-deformation magnitude based on the phase and amplitude information of SAR images: A case study of the Baige landslide in Jinsha River
YANG Fan1(), MA Zhigang2, WEN Yan2, Dong Jie3(), JIANG Qinghui4
1. State Key Laboratory of Surveying, Mapping and Remote Sensing Information Engineering, Wuhan University, Wuhan 430079, China
2. Sichuan Institute of Territorial Space Ecological Restoration and Geological Disaster Prevention and Control, Chengdu 610084, China
3. School of Remote Sensing Information Engineering, Wuhan University, Wuhan 430079, China
4. School of Civil Engineering, Wuhan University, Wuhan 430079, China
全文: PDF(9448 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

近年来,雷达遥感被广泛用于提取滑坡表面的高精度形变信息,所用技术包括基于相位的干涉测量和基于幅度的像素偏移量追踪; 然而,大型复杂滑坡的形变量在时间演化以及空间分布上都存在较大差异,单一雷达遥感手段难以实现滑坡形变的全面监测。该文在雷达遥感形变探测能力分析的基础上,提出联合SAR(synthetic aperture Radar)影像的相位和幅度信息进行滑坡的全过程监测。以2018年发生的金沙江白格滑坡为例,基于2014—2021年Sentinel-1数据和2014—2018年ALOS-2数据,联合时序InSAR(interferometric SAR)分析和时序像素偏移量追踪(pixel offset tracking, POT),获取滑坡灾前灾后时序形变。结果显示白格滑坡灾前后缘的年平均速率在20 mm/a,主滑坡区2014年12月—2018年7月形变量可达45 m左右; 灾后滑坡逐渐向后缘扩张,年平均形变速率可达200 mm/a,已经威胁到部分民房。2种方法的联合可以实现大型复杂滑坡的时空维多形变量级提取。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨帆
马志刚
文艳
董杰
姜清辉
关键词 干涉测量像素偏移量追踪多形变量级大型滑坡    
Abstract

In recent years, radar remote sensing has been extensively applied to extract high-precision deformation information of landslide surfaces. The techniques used include phase-based interferometry and amplitude-based pixel offset tracking (POT). However, large complex landslides exhibit significantly different deformation magnitudes over the spatio-temporal evolution, complicating the comprehensive monitoring of landslide deformation via single radar remote sensing. Hence, by analyzing the deformation detection capability of radar remote sensing, this study proposed monitoring the whole process of a landslide combined with the phase and amplitude information of synthetic aperture radar (SAR) images. This study investigated the Baige landslide occurring in Jinsha River in 2018 based on Sentinel-1 data from 2014 to 2021 and ALOS-2 data from 2014 to 2018. Combined with time-series interferometric SAR (InSAR) analysis and POT, this study acquired the pre- and post-disaster time-series deformations of the landslide. The results are as follows. Pre-disaster, the trailing edge of the Baige landslide exhibited an average annual rate of 20 mm/a, with deformation of the main landslide area up to about 45 m from December 2014 to July 2018. Post-disaster, the landslide gradually expanded to the trailing edge, with an average annual deformation rate reaching 200 mm/a, threatening the safety of some civilian houses. Therefore, the combined method in this study can achieve the multi-deformation magnitude extraction of large complex landslides from spatio-temporal dimensions.

Key wordsinterferometry    pixel offset tracking    multi-deformation magnitude    large landslide
收稿日期: 2022-12-05      出版日期: 2024-06-14
ZTFLH:  TP79  
基金资助:四川省科技计划项目“四川省地质灾害隐患早期识别与监测预警”(2021JDR0394);国家自然科学基金青年项目“复杂山区滑坡形变监测的相干散射体InSAR方法”(41904001)
通讯作者: 董 杰(1988-),男,特聘副研究员,研究方向为时间序列InSAR算法及其在地表形变监测中的应用。Email: dongjie@whu.edu.cn
作者简介: 杨 帆(1999-),女,硕士研究生,研究方向为雷达遥感在地质灾害中的应用。Email: yangfan_whu@whu.edu.cn
引用本文:   
杨帆, 马志刚, 文艳, 董杰, 姜清辉. 联合SAR影像相位和幅度信息的多形变量级滑坡监测——以金沙江白格滑坡为例[J]. 自然资源遥感, 2024, 36(2): 257-267.
YANG Fan, MA Zhigang, WEN Yan, Dong Jie, JIANG Qinghui. Monitoring a landslide with a multi-deformation magnitude based on the phase and amplitude information of SAR images: A case study of the Baige landslide in Jinsha River. Remote Sensing for Natural Resources, 2024, 36(2): 257-267.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2022467      或      https://www.gtzyyg.com/CN/Y2024/V36/I2/257
Fig.1  基于卫星雷达遥感技术的多形变量级滑坡监测方法流程
Fig.2  研究区域概况
Fig.3  滑坡发生后产生的严重影响
数据集 Sentinel-1卫星 ALOS-2 PALSAR-2卫星
轨道方向 升轨 降轨 升轨
航向角/(°) -13 193 -15
分辨率/m
(距离向×方位向)
5×20 5×20 7×4
时间范围 2014年10月—2021年12月 2014年12月—2018年7月
影像数量/景 327 10
Tab.1  SAR影像数据集参数
Fig.4  Sentinel-1数据SBAS-InSAR方法获得白格滑坡形变速率图
Fig.5  ALOS-2数据时序POT方法获得白格滑坡灾前累积形变量
Fig.6  灾前空间维联合2种方法累积形变结果
Fig.7  Sentinel-1数据时序InSAR方法获得白格滑坡灾后形变量及形变速率图
Fig.8  灾后现场考察图片
Fig.9  Sentinel-1升降轨数据灾后二维形变反演结果
[1] 黄润秋. 20世纪以来中国的大型滑坡及其发生机制[J]. 岩石力学与工程学报, 2007, 26(3):433-454.
Huang R Q. Large-scale landslides and their sliding mechanisms in China since the 20th century[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(3):433-454.
[2] 李振洪, 宋闯, 余琛, 等. 卫星雷达遥感在滑坡灾害探测和监测中的应用:挑战与对策[J]. 武汉大学学报(信息科学版), 2019, 44(7):967-979.
Li Z H, Song C, Yu C, et al. Application of satellite radar remote sensing to landslide detection and monitoring:Challenges and solutions[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7):967-979.
[3] 许强, 汤明高, 黄润秋. 大型滑坡监测预警与应急处置[M]. 北京: 科学出版社, 2015.
Xu Q, Tang M G, Huang R Q. Monitoring, early warning and emergency disposal of large landslide[M]. Beijing: Science Press, 2015.
[4] 李德仁, 周月琴, 马洪超. 卫星雷达干涉测量原理与应用[J]. 测绘科学, 2000, 25(1):9-12.
Li D R, Zhou Y Q, Ma H C. Principle and application of interferometry SAR[J]. Science of Surveying and Mapping, 2000, 25(1):9-12.
[5] 郭华东, 邵芸, 王长林. 雷达对地观测理论与应用[M]. 北京: 科学出版社, 2000.
Guo H D, Shao Y, Wang C L. Radar for earth observation[M]. Beijing: Science Press, 2000.
[6] 廖明生, 王腾. 时间序列InSAR技术与应用[M]. 北京: 科学出版社, 2014.
Liao M S, Wang T. Time series InSAR technology and its application[M]. Beijing: Science Press, 2014.
[7] 廖明生, 林珲. 雷达干涉测量:原理与信号处理基础[M]. 北京: 测绘出版社, 2003.
Liao M S, Lin H. Synthetic aperture Radar interferometry[M]. Beijing: Sino Maps Press, 2003.
[8] 廖明生, 张路, 史绪国, 等. 滑坡变形雷达遥感监测方法与实践[M]. 北京: 科学出版社, 2017.
Liao M S, Zhang L, Shi X G, et al. Radar remote sensing monitoring method and practice of landslide deformation[M]. Beijing: Science Press, 2017.
[9] Fruneau B, Achache J, Delacourt C. Observation and modelling of the Saint-Étienne-de-Tinée landslide using SAR interferometry[J]. Tectonophysics, 1996, 265(3/4):181-190.
[10] Liao M, Tang J, Wang T, et al. Landslide monitoring with high-resolution SAR data in the Three Gorges region[J]. Science China Earth Sciences, 2012, 55(4):590-601.
[11] 朱建军, 李志伟, 胡俊. InSAR变形监测方法与研究进展[J]. 测绘学报, 2017, 46(10):1717-1733.
doi: 10.11947/j.AGCS.2017.20170350
Zhu J J, Li Z W, Hu J. Research progress and methods of InSAR for deformation monitoring[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10):1717-1733.
doi: 10.11947/j.AGCS.2017.20170350
[12] Michel R, Avouac J P, Taboury J. Measuring ground displacements from SAR amplitude images:Application to the Landers Earthquake[J]. Geophysical Research Letters, 1999, 26(7):875-878.
[13] Manconi A, Casu F, Ardizzone F, et al. Brief communication:Rapid mapping of landslide events:The 3 December 2013 Montescaglioso landslide,Italy[J]. Natural Hazards and Earth System Sciences, 2014, 14(7):1835-1841.
[14] Cai J, Wang C, Mao X, et al. An adaptive offset tracking method with SAR images for landslide displacement monitoring[J]. Remote Sensing, 2017, 9(8):830.
[15] Saito M. Forecasting time of slope failure by tertiary creep[C]// Proceedings of the Seventh International Conference on Soil Mechanics and Foundation Engineering.Mexico, 1969:677-683.
[16] 许强, 郑光, 李为乐, 等. 2018年10月和11月金沙江白格两次滑坡-堰塞堵江事件分析研究[J]. 工程地质学报, 2018, 26(6):1534-1551.
Xu Q, Zheng G, Li W L, et al. Study on successive landslide damming events of Jinsha River in Baige Village on Octorber 11 and November 3,2018[J]. Journal of Engineering Geology, 2018, 26(6):1534-1551.
[17] Fan X, Xu Q, Alonso-Rodriguez A, et al. Successive landsliding and damming of the Jinsha River in eastern Tibet,China:Prime investigation,early warning,and emergency response[J]. Landslides, 2019, 16(5):1003-1020.
[18] Berardino P, Fornaro G, Lanari R, et al. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(11):2375-2383.
[19] Massonnet D, Feigl K L. Radar interferometry and its application to changes in the Earth’s surface[J]. Reviews of Geophysics, 1998, 36(4):441-500.
[20] Baran I, Stewart M, Claessens S. A new functional model for determining minimum and maximum detectable deformation gradient resolved by satellite radar interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(4):675-682.
[21] Jiang M, Li Z W, Ding X L, et al. Modeling minimum and maximum detectable deformation gradients of interferometric SAR measurements[J]. International Journal of Applied Earth Observation and Geoinformation, 2011, 13(5):766-777.
[22] Bamler R, Eineder M. Accuracy of differential shift estimation by correlation and split-bandwidth interferometry for wideband and delta-k SAR systems[J]. IEEE Geoscience and Remote Sensing Letters, 2005, 2(2):151-155.
[23] Hanssen R F. Radar Interferometry[M]. Netherlands:Springer, 2001:172-176.
[24] Hooper A, Zebker H, Segall P, et al. A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers[J]. Geophysical Research Letters, 2004, 31(23):L23611.
[1] 张志华, 胡长涛, 张镇, 杨树文. 基于PS-InSAR上海地区地表沉降监测与分析[J]. 自然资源遥感, 2022, 34(3): 106-111.
[2] 麻学飞, 张双成, 惠文华, 许强. 山西省临汾市矿区地表形变InSAR大范围探测与监测[J]. 自然资源遥感, 2022, 34(3): 146-153.
[3] 王振林, 廖明生, 张路, 罗恒, 董杰. 基于时序Sentinel-1数据的锦屏水电站左岸边坡形变探测与特征分析[J]. 国土资源遥感, 2019, 31(2): 204-209.
[4] 白泽朝, 汪宝存, 靳国旺, 徐青, 张红敏, 刘辉. Sentinel-1A数据矿区地表形变监测适用性分析[J]. 国土资源遥感, 2019, 31(2): 210-217.
[5] 刘斌, 葛大庆, 李曼, 张玲, 王艳, 郭小方, 张晓博. 地基合成孔径雷达干涉测量技术及其应用[J]. 国土资源遥感, 2017, 29(1): 1-6.
[6] 丁荣荣, 徐佳, 林晓彬, 许康. 基于高分辨率TerraSAR-X影像的PSInSAR地表形变监测[J]. 国土资源遥感, 2015, 27(4): 158-164.
[7] 孙亚飞, 江利明, 柳林, 孙永玲, 汪汉胜. TanDEM-X双站SAR干涉测量及研究进展[J]. 国土资源遥感, 2015, 27(1): 16-22.
[8] 倪文俭, 过志峰, 孙国清. 基于PALSAR数据的DEM提取方法研究[J]. 国土资源遥感, 2009, 21(3): 19-23.
[9] 周建民, 李震, 李新武. C-band和L-band雷达干涉数据西部冰川区域相干性对比分析[J]. 国土资源遥感, 2009, 21(2): 9-13.
[10] 谢酬, 李震, 李新武. 基于PALSAR数据的青藏高原冻土形变检测方法研究[J]. 国土资源遥感, 2008, 20(3): 15-19.
[11] 刘广, 郭华东, Ramon Hanssen, Zbigniew Perski, 李新武, 岳焕印, 范景辉. InSAR技术在矿区沉降监测中的应用研究[J]. 国土资源遥感, 2008, 20(2): 51-55.
[12] 徐佳, 关泽群, 何秀凤. 重复轨道雷达干涉测量中的大气影响及其研究展望[J]. 国土资源遥感, 2007, 19(2): 1-5.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发