Please wait a minute...
 
自然资源遥感  2022, Vol. 34 Issue (2): 97-104    DOI: 10.6046/zrzyyg.2021130
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
结合随机擦除和YOLOv4的高空间分辨率遥感影像桥梁自动检测
孙宇1(), 黄亮1,2(), 赵俊三1,3,4, 常军5, 陈朋弟1, 成飞飞1
1.昆明理工大学国土资源工程学院,昆明 650093
2.云南省高校高原山区空间信息测绘技术应用工程研究中心,昆明 650093
3.智慧矿山地理空间信息集成创新重点实验室,昆明 650093
4.云南省高校自然资源空间信息集成与应用科技创新团队,昆明 650211
5.自然资源部第一大地测量队,西安 710054
High spatial resolution automatic detection of bridges with high spatial resolution remote sensing images based on random erasure and YOLOv4
SUN Yu1(), HUANG Liang1,2(), ZHAO Junsan1,3,4, CHANG Jun5, CHEN Pengdi1, CHENG Feifei1
1. Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, China
2. Surveying and Mapping Geo-Informatics Technology Research Center on Plateau Mountains of Yunnan Higher Education, Kunming 650093, China
3. Key Laboratory of Geospatial Information Integration Innovation for Smart Mines, Kunming 650093, China
4. Spatial Information Integration Technology of Natural Resources in Universities of Yunnan Province, Kunming 650211, China
5. The First Geodetic Surveying Brigade of Ministry of Natural Resources, Xi’an 710054, China
全文: PDF(7326 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

桥梁作为典型且重要的地面目标,是交通运输线路的咽喉,对桥梁进行自动检测具有十分重要的社会和经济意义。深度学习已成为桥梁检测新方式,但对云雾遮挡的桥梁检测精度较低。针对该问题,提出了一种结合随机擦除(random erase, RE)数据增强和YOLOv4模型的桥梁目标自动检测方法,首先统计数据集中目标的尺度范围,利用k-means聚类获得锚框尺寸; 然后通过RE与Mosaic数据增强相结合的方法模拟云雾遮挡的情况; 接着采用YOLOv4网络对经增强后的数据集进行训练; 最后采用平均精度(mean average precision, mAP)评估实验结果。实验结果表明,提出方法的mAP为97.06%,比YOLOv4提高了2.99%,其中被云雾遮挡的桥梁平均检测准确度提高了12%,验证了提出方法的有效性及实用性。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙宇
黄亮
赵俊三
常军
陈朋弟
成飞飞
关键词 深度学习目标检测高分影像桥梁检测YOLOv4网络    
Abstract

As a typical and important ground target, the bridge is the vital passage between transportation lines, so automatic detection of a bridge is of great social and economic significance. Deep learning has become a new way of bridge detection, but the detection accuracy for bridges obscured by cloud and mist is low. In order to solve this problem, an automatic bridge target detection method combining Random erase (RE) data enhancement and the YOLOv4 model is proposed: firstly, the scale range of the target in the data set is determined, and the candidate frame size is obtained by K-means clustering; secondly, the cloud obscuration is simulated by a combination of RE and mosaic data enhancement; thirdly, the enhanced data set is trained by YOLOv4 network; and finally, the mean Average Precision (mAP) is used to evaluate the experimental results. The experimental results show that the detection accuracy obtained by mAP is 97.06%, which is 2.99% higher than that of traditional YOLOv4, and the average detection accuracy of bridges obscured by a cloud is improved by 12%, which verifies the effectiveness and practicability of the proposed method.

Key wordsdeep learning    object detection    high spatial resolution remote sensing image    bridge detection    YOLOv4 network
收稿日期: 2020-11-30      出版日期: 2022-06-20
ZTFLH:  P236  
基金资助:国家自然科学基金项目“南方山地城镇建设用地与变化的坡度梯度效应研究”(41961039);云南省应用基础研究计划面上项目“基于全卷积神经网络的多源遥感影像变化检测”(2018FB078);云南省高校工程中心建设计划共同资助
通讯作者: 黄亮
作者简介: 孙 宇(1996-),女,硕士研究生,主要研究方向为遥感影像目标检测。Email: sunyu_kust@163.com
引用本文:   
孙宇, 黄亮, 赵俊三, 常军, 陈朋弟, 成飞飞. 结合随机擦除和YOLOv4的高空间分辨率遥感影像桥梁自动检测[J]. 自然资源遥感, 2022, 34(2): 97-104.
SUN Yu, HUANG Liang, ZHAO Junsan, CHANG Jun, CHEN Pengdi, CHENG Feifei. High spatial resolution automatic detection of bridges with high spatial resolution remote sensing images based on random erasure and YOLOv4. Remote Sensing for Natural Resources, 2022, 34(2): 97-104.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2021130      或      https://www.gtzyyg.com/CN/Y2022/V34/I2/97
Fig.1  技术路线图
Fig.2  数据集样本示例
序号 1 2 3 4 5 6 7 8 9
x 19 24 28 36 55 64 108 116 200
y 16 76 34 173 25 56 382 37 129
Tab.1  k-means聚类结果
Fig.3  随机擦除数据增强流程图
Fig.4  CIoU示意图
模型 网络 +RE 涨点 本文涨点
SSD 61.09 66.82 5.73 35.97
Mobilenet-SSD 66.56 70.23 3.67 30.50
Centernet 82.07 84.28 2.21 14.99
Efficientdet 76.67 76.44 1.77 20.39
Retinanet 78.23 80.12 1.89 18.83
YOLOv3 93.82 95.66 1.84 3.24
YOLOv4 94.07 97.06 2.99 2.99
Tab.2  不同模型的检测结果
Fig.5  YOLOv3检测结果图
Fig.6  YOLOv4检测结果图
Fig.7  本文方法的检测结果
模型 常规 复杂
背景
多尺度 并行 云雾
遮挡
共含桥梁/个 5 3 19 6 8
正确检出/个 YOLOv3 4 1 18 4 3
YOLOv4 5 2 18 5 4
本文方法 5 3 19 5 8
平均检测准确度/% YOLOv3 98.25 89.00 95.81 98.00 93.33
YOLOv4 94.20 88.00 99.70 97.40 88.00
本文方法 99.80 99.50 99.59 100.00 100.00
Tab.3  样例检测结果
[1] 崔东顺. 可见光航拍图像水上桥梁检测算法研究[D]. 北京: 北京理工大学, 2015.
Cui D S. Research on visible light aerial image bridge detection algorithm master of science[D]. Beijing: Beijing Institute of Technology, 2015.
[2] Baker D C, Hwang S S, Aggarwal J K. Detection and segmentation of man-made objects in outdoor scenes:Concrete bridges[J]. Journal of the Optical Society of America, 1989, 6(6):938-950.
[3] 谭向程, 安道祥, 陈乐平, 等. 一种基于极化圆周SAR图像的陆上桥梁提取方法[J]. 雷达学报, 2021, 10(3):402-415.
Tan X C, An D X, Chen L P, et al. A method of land bridge extraction based on polarized circumferential SAR image[J]. Chinese Journal of Radar, 2021, 10(3):402-415.
[4] 赵江洪, 张晓光, 杨璐, 等. 深度学习的遥感影像舰船目标检测[J]. 测绘科学, 2020, 45(3):110-116,134.
Zhao J H, Zhang X G, Yang L, et al. Deep learning for ship target detection in remote sensing images[J]. Science of Surveying and Mapping, 2020, 45(3):110-116,134.
[5] 李淑敏, 冯权泷, 梁其椿, 等. 基于深度学习的国产高分遥感影像飞机目标自动检测[J]. 遥感技术与应用, 2018, 33(6):1095-1102.
Li S M, Feng Q L, Liang Q C, et al. Automatic detection of aircraft targets in domestic high-resolution remote sensing images based on deep learning[J]. Remote Sensing Technology and Application, 2018, 33(6):1095-1102.
[6] 陈朋弟, 黄亮, 夏炎, 等. 基于Mask R-CNN的无人机影像路面交通标志检测与识别[J]. 国土资源遥感, 2020, 32(4):61-67.doi: 10.6046/gtzyyg.2020.04.09.
doi: 10.6046/gtzyyg.2020.04.09
Chen P D, Huang L, Xia Y, et al. Detection and recognition of traffic signing based on Mask R-CNN image using UAV[J]. Remote Sensing of Land and Resources, 2020, 32(4):61-67.doi: 10.6046/gtzyyg.2020.04.09.
doi: 10.6046/gtzyyg.2020.04.09
[7] Chen L, Weng T, Xing J, et al. A new deep learning network for automatic bridge detection from SAR images based on balanced and attention mechanism[J]. Remote Sensing, 2020, 12 (3):441.
doi: 10.3390/rs12030441
[8] Lomenie N, Barbeau J. Integrating textural and geometric information for an automatic bridge detection system[C]// IGARSS 2003,2003 IEEE International Geoscience and Remote Sensing Symposium.Toulouse:IEEE, 2003:3952-3954.
[9] 杨浩, 尹东, 洪日昌. 高分辨率遥感图像中桥梁自动识别方法研究[J]. 计算机仿真, 2006, 22(9):119-122.
Yang H, Yin D, Hong R C. Research on automatic bridge identification method in high resolution remote sensing images[J]. Computer Simulation, 2006, 22(9):119-122.
[10] 陈爱军. 大幅面卫星遥感图像中桥梁识别算法[J]. 计算机仿真, 2014, 31(6):362-366.
Chen A J. Bridge recognition algorithm in large-scale satellite remote sensing images[J]. Computer Simulation, 2014, 31(6):362-366.
[11] Hao X, Zhang G, Ma S. Deep learning[J]. International Journal of Semantic Computing, 2016, 10(3):417-439.
doi: 10.1142/S1793351X16500045
[12] Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]// 2014 IEEE Conference on Computer Vision and Pattern Recognition.Columbus:IEEE, 2014:580-587.
[13] Girshick R. Fast R-CNN[C]// 2015 IEEE International Conference on Computer Vision (ICCV).Santiago:IEEE, 2015:1440-1448.
[14] Ren S, He K, Girshick R, et al. Faster R-CNN:Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 39(6):1137-1149.
doi: 10.1109/TPAMI.2016.2577031
[15] Liu W, Anguelov D, Erhan D, et al. Ssd:Single shot multibox detector[J]. European Conference on Computer Vision, 2016, 9905:21-37.
[16] Redmon J, Divvala S, Girshick R, et al. You only look once:Unified,real-time object detection[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas: IEEE, 2016:779-788.
[17] Redmon J, Farhadi A. YOLO9000:Better,faster,stronger[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Honolulu:IEEE, 2017:6517-6525.
[18] Redmon J, Farhadi A. YOLOv3:An incremental improvement[EB/OL].(2018-04-08).[2021-03-30]. https://pjreddie.com/media/files/papers/YOLOv3.pdf.
[19] Bochkovskiy A, Wang C Y, Liao H Y M. Yolov4:Optimal speed and accuracy of object detection[J]. arXiv Preprint arXiv: 2020, 2004:10934.
[20] 2020 Gaofen challenge on automated high-resolution earth observation image interpretation[EB/OL]. Online: http://en.sw.chreos.org.
[21] Zhong Z, Zheng L, Kang G, et al. Random erasing data augmentation[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2017, 34 (7):13001-13008.
doi: 10.1609/aaai.v34i07.7000
[22] Wang C Y, Liao H Y M, Wu Y H, et al. CSPNet:A new backbone that can enhance learning capability of CNN[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).Seattle:IEEE, 2020:1571-1580.
[1] 刘立, 董先敏, 刘娟. 顾及地学特征的遥感影像语义分割模型性能评价方法[J]. 自然资源遥感, 2023, 35(3): 80-87.
[2] 牛祥华, 黄微, 黄睿, 蒋斯立. 基于注意力特征融合的高保真遥感图像薄云去除[J]. 自然资源遥感, 2023, 35(3): 116-123.
[3] 张仙, 李伟, 陈理, 杨昭颖, 窦宝成, 李瑜, 陈昊旻. 露天开采矿区要素遥感提取研究进展及展望[J]. 自然资源遥感, 2023, 35(2): 25-33.
[4] 刁明光, 刘勇, 郭宁博, 李文吉, 江继康, 王云霄. 基于Mask R-CNN的遥感影像疏林地智能识别方法[J]. 自然资源遥感, 2023, 35(2): 97-104.
[5] 邱磊, 张学志, 郝大为. 基于深度学习的视频SAR动目标检测与跟踪算法[J]. 自然资源遥感, 2023, 35(2): 157-166.
[6] 张可, 张庚生, 王宁, 温静, 李宇, 杨俊. 基于遥感和深度学习的输电线路地表水深预测[J]. 自然资源遥感, 2023, 35(1): 213-221.
[7] 胡建文, 汪泽平, 胡佩. 基于深度学习的空谱遥感图像融合综述[J]. 自然资源遥感, 2023, 35(1): 1-14.
[8] 赵凌虎, 袁希平, 甘淑, 胡琳, 丘鸣语. 改进Deeplabv3+的高分辨率遥感影像道路提取模型[J]. 自然资源遥感, 2023, 35(1): 107-114.
[9] 吕雅楠, 朱红, 孟健, 崔成玲, 宋其淇. 面向高分辨率遥感影像车辆检测的深度学习模型综述及适应性研究[J]. 自然资源遥感, 2022, 34(4): 22-32.
[10] 谭海, 张荣军, 樊文锋, 张一帆, 徐航. 融合多尺度特征的国产光学影像辐射异常分类检测[J]. 自然资源遥感, 2022, 34(4): 97-104.
[11] 苏玮, 林阳阳, 岳文, 陈颖彪. 基于U-Net卷积神经网络的广东省海水养殖区识别及其时空变化遥感监测[J]. 自然资源遥感, 2022, 34(4): 33-41.
[12] 张鹏强, 高奎亮, 刘冰, 谭熊. 联合空谱信息的高光谱影像深度Transformer网络分类[J]. 自然资源遥感, 2022, 34(3): 27-32.
[13] 王华俊, 葛小三. 一种轻量级的DeepLabv3+遥感影像建筑物提取方法[J]. 自然资源遥感, 2022, 34(2): 128-135.
[14] 伊尔潘·艾尼瓦尔, 买买提·沙吾提, 买合木提·巴拉提. 基于GF-2影像和Unet模型的棉花分布识别[J]. 自然资源遥感, 2022, 34(2): 242-250.
[15] 薛白, 王懿哲, 刘书含, 岳明宇, 王艺颖, 赵世湖. 基于孪生注意力网络的高分辨率遥感影像变化检测[J]. 自然资源遥感, 2022, 34(1): 61-66.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发