Please wait a minute...
 
自然资源遥感  2023, Vol. 35 Issue (2): 157-166    DOI: 10.6046/zrzyyg.2022126
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
基于深度学习的视频SAR动目标检测与跟踪算法
邱磊1,2(), 张学志2, 郝大为2
1.海军工程大学兵器工程学院,武汉 430033
2.陆军工程大学军械士官学校雷达系,武汉 430075
VideoSAR moving target detection and tracking algorithm based on deep learning
QIU Lei1,2(), ZHANG Xuezhi2, HAO Dawei2
1. Ordnance Enginnering College, Naval University of Engineering, Wuhan 430033, China
2. Ordnance NCO Academy, Army Engineering University of PLA, Wuhan 430075, China
全文: PDF(4182 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

视频合成孔径雷达(synthetic aperture Radar,SAR)技术被广泛应用于军事侦查、地质勘探和灾害预测等领域。由于SAR视频存在很多的相干斑(Speckle)噪声以及镜面反射、叠掩效应等干扰因素,运动目标容易与背景或其他目标混淆在一起。针对上述问题,文章提出了一种有效的视频SAR目标检测与跟踪算法。首先,提取视频SAR的多个特征用于构造多通道特征图; 然后,使用改进的轻量EfficientDet网络对更深层的特征进行提取,从而在兼顾算法效率的同时提升SAR目标检测的准确度; 最后,采用基于目标检测框的轨迹关联策略对视频SAR中同一目标进行关联。实验表明,本研究提出的方法针对SAR阴影目标检测与跟踪任务取得了较好的效果。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
邱磊
张学志
郝大为
关键词 视频SAR特征增强目标检测深度学习特征金字塔多目标跟踪    
Abstract

The video synthetic aperture radar (VideoSAR) technology is widely used in military reconnaissance, geological exploration, and disaster prediction, among other fields. Owing to multiple interference factors in SAR videos, such as speckle noise, specular reflection, and overlay effect, moving targets are easily mixed with background or other targets. Therefore, this study proposed an effective VideoSAR target detection and tracking algorithm. Firstly, several features of VideoSAR were extracted to construct multichannel feature maps. Then, deeper features were extracted using the improved lightweight EfficientDet network, thus improving the accuracy of SAR target detection while considering algorithm efficiency. Finally, the trajectory association strategy based on bounding boxes was employed to associate the same target in VideoSAR. The experimental results show that the method proposed in this study is effective for SAR shadow target detection and tracking.

Key wordsVideoSAR    feature enhancement    target detection    deep learning    feature pyramid network    multi-target tracking
收稿日期: 2022-04-06      出版日期: 2023-07-07
ZTFLH:  TP79  
作者简介: 邱 磊(1986-),男,硕士,讲师,研究方向为雷达工程、火力指挥与控制工程。Email: 175823704@qq.com
引用本文:   
邱磊, 张学志, 郝大为. 基于深度学习的视频SAR动目标检测与跟踪算法[J]. 自然资源遥感, 2023, 35(2): 157-166.
QIU Lei, ZHANG Xuezhi, HAO Dawei. VideoSAR moving target detection and tracking algorithm based on deep learning. Remote Sensing for Natural Resources, 2023, 35(2): 157-166.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2022126      或      https://www.gtzyyg.com/CN/Y2023/V35/I2/157
Fig.1  特征分析流程
Fig.2  EfficientNet+多尺度特征金字塔网络模型结构
Fig.3  多尺度特征融合的结构
Fig.4  轨迹关联模块
Fig.5  Bi-LSTM网络结构
面积尺寸/像素 舰船目标数量/个
0×0~8×8 269
8×8~16×16 3 231
16×16~32×32 25 302
32×32~64×64 20 842
64×64~128×128 1 209
128×128~n×n 32
合计 50 885
Tab.1  SAR舰船目标尺寸情况
尺寸/像素 阴影目标数量/个
0×0~8×8 0
8×8~16×16 1 374
16×16~16×16 4 041
32×32~16×16 5
64×64~n×n 0
合计 5 020
Tab.2  Sandia阴影目标尺寸情况
特征金字塔层级 尺寸设定
1 42
2 82
3 162
4 322
5 642
6 1282
Tab.3  中科院舰船目标样本集的多尺度特征金字塔构建(像素×像素)
特征金字塔层级 尺寸设定
1 102
2 202
3 402
Tab.4  Sandia阴影目标样本集的多尺度特征金字塔构建(像素×像素)
Fig.6  样本曲线
Fig.7  滤波效果对比
Fig.8  Sandia数据特征分析
网络模型 准确率 召回率 F1指标
FasterR-CNN 95.68 81.82 88.21
特征金字塔网络 95.70 86.46 90.85
RetinaNet 96.98 88.12 92.34
轻量EfficentDet 98.08 90.23 93.99
多特征输入+轻量EfficentDet 98.35 91.08 94.58
Tab.5  目标检测定量评价结果比较
Fig.9  SAR舰船目标检测可视化结果
网络模型 准确率 召回率 F1指标
Faster RCNN 90.11 89.65 89.88
特征金字塔网络 92.44 92.26 92.35
RetinaNet 96.99 94.39 95.67
轻量EfficentDet 97.92 96.37 97.14
多特征输入+轻量EfficentDet 98.85 97.80 98.32
Tab.6  阴影目标检测定量评价结果比较
Fig.10  在2个不同时刻SAR车辆目标检测可视化结果
Fig.11  Bi-LSTM预测漏警目标示例
Fig.12  轨迹关联优化示例
跟踪模块 MOTA IDP IDR IDF1
IoU=0.5 73.3 26.1 25.2 25.5
轨迹优化+LSTM 90.5 81.9 80.3 81.1
轨迹优化+Bi-LSTM 91.0 82.1 80.5 81.3
Tab.7  多目标跟踪评价结果比较
[1] Wells L, Sorensen K, Doerry A, et al. Developments in SAR and IFSAR systems and technologies at Sandia National Laboratories[C]// Aerospace Conference.IEEE, 2005.
[2] Wang D, Zhu D Y, Liu R. Video SAR high-speed processing technology based on FPGA[C]// 2019 IEEE MTT-S International Microwave Biomedical Conference (IMBioC).IEEE, 2019, 1:1-4.
[3] 丁金闪. 视频SAR成像与动目标阴影检测技术[J]. 雷达学报, 2020, 9(2):14.
Ding J S. Focusing algorithms and moving target detection based on video SAR[J]. Journal of Radars, 2020, 9(2):14.
[4] 林旭, 洪峻, 孙显, 等. 一种基于自适应背景杂波模型的宽幅SAR图像CFAR舰船检测算法[J]. 遥感技术与应用, 2014, 29(1):75-81.
Lin X, Hong J, Sun X, et al. New CFAR ship detection algorithm based on a daptive back-ground clutter model in wide swath SAR images[J]. Remote Sensing Technology and Application, 2014, 29(1):75-81.
[5] Huang Y, Liu F. Detecting cars in VHR SAR images via semantic CFAR algorithm[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(6):801-805.
doi: 10.1109/LGRS.2016.2546309
[6] Kaplan L M. Improved SAR target detection via extended fractal features[J]. IEEE Transactions on Aerospace and Electronic Systems, 2001, 37(2) :436-451.
doi: 10.1109/7.937460
[7] 刘冬, 张弓. 基于指数小波分形特征的SAR图像特定目标检测[J]. 西安电子科技大学学报, 2010, 37(2):366-373.
Liu D, Zhang G. Special target detection of the SAR image via exponential wavelet fractal[J]. Journal of Xidian University, 2010, 37(2):366-373.
[8] Sommer L, Schmidt N, Schumann A, et al. Search area reduction Fast-RCNN for fast vehicle detection in large aerial imagery[C]// 25th IEEE International Conference on Image Processing (ICIP).IEEE, 2018:3054-3058.
[9] Li J W, Qu C W, Peng S J. Ship detection in SAR images based on an improved Faster R-CNN[C]// 2017 SAR in Big Data Era: Models,Methods and Applications (BIGSARDATA).IEEE, 2017.
[10] Jiang S, Zhu M, He Y, et al. Ship detection with SAR based on YOLO[C]// IGARSS 2020 IEEE International Geoscience and Remote Sensing Symposium.IEEE, 2020.
[11] Kang M, Ji K, Leng X, et al. Contextual region-based convolutional neural network with multilayer fusion for SAR ship detection[J]. Remote Sensing, 2017, 9(8):860.
doi: 10.3390/rs9080860
[12] Wang R, Xu F, Pei J, et al. An improved Faster R-CNN based on MSER decision criterion for SAR image ship detection in harbor[C]// IGARSS 2019 IEEE International Geoscience and Remote Sensing Symposium.IEEE, 2019:1322-1325.
[13] An Q, Pan Z X, Liu L, et al. DRBox-v2:An improved detector with rotatable boxes for target detection in SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(11) :8333-8349.
doi: 10.1109/TGRS.36
[14] 张椰, 朱卫纲, 吴戌. 全卷积神经网络应用于SAR目标检测[J]. 电讯技术, 2018, 58(11) :1244-1251.
Zhang Y, Zhu W G, Wu X. Target detection based on fully convolutional neural network for SAR images[J]. Telecommunication Engineering, 2018, 58(11) :1244-1251.
[15] Wang H, Chen Z S, Zheng S C. Preliminary research of low-RCS moving target detection based on Ka-band video SAR[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(6):811-815.
doi: 10.1109/LGRS.2017.2679755
[16] Zhang Y, Yang S Y, Li H B, et al. Shadow tracking of moving target based on CNN for video SAR system[C]// IGARSS 2018 IEEE International Geoscience and Remote Sensing Symposium.IEEE, 2018:4399-4402.
[17] Xu Z H, Zhang Y, Li H B, et al. A new shadow tracking method to locate the moving target in SAR imagery based on KCF[C]// International Conference in Communications,Signal Processing,and Systems.Springer, 2017:2661-2669.
[18] Liang Z H, Liang C J, Zhang Y, et al. Tracking of moving target based on SiamMask for video SAR system[C]// 2019 IEEE International Conference on Signal,Information and Data Processing.IEEE, 2019:1-4.
[19] Zhang Y, Zhu D Y, Yu X, et al. Approach to moving targets shadow detection for video SAR[J]. Journal of Electronics and Information Technology, 39(9):2197-2202
[20] Henke D, Magnard C, Frioud M, et al. Moving-target tracking in single-channel wide-beam SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(11):4735-4747.
doi: 10.1109/TGRS.2012.2191561
[21] Henke D, Dominguez E M, Small D, et al. Moving target tracking in single-and multichannel SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(6):3146-3159.
doi: 10.1109/TGRS.2014.2369060
[22] Ding J, Wen L, Zhong C, et al. Video SAR moving target indication using deep neural network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(10):7194-7204.
doi: 10.1109/TGRS.36
[23] Zhao B, Han Y, Wang H, et al. Robust shadow tracking for video SAR[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18(5):821-825.
doi: 10.1109/LGRS.2020.2988165
[24] 何志华, 陈兴, 于春锐, 等. 一种稳健的视频SAR动目标阴影检测与跟踪处理方法[J]. 电子与信息学报, 2022, 44:1-9.
He Z H, Chen X, Yu C R, et al. A robust moving target shadow detection and tracking method for VideoSAR[J]. Journal of Electronics and Information Technology, 2022, 44:1-9.
[25] 刘雨洁, 齐向阳. 基于长时间间隔序贯SAR图像的运动舰船跟踪方法[J]. 中国科学院大学学报, 2021, 38(5):7.
Liu Y J, Qi X Y. Moving ship tracking method based on long time interval sequential SAR images[J]. Journal of University of Chinese Academy of Sciences, 2021, 38(5):7.
[26] 胡瑶. 基于阴影的SAR多目标跟踪方法研究[D]. 成都: 电子科技大学, 2021.
Hu Y. Research on shadow-based SAR multi-target tracking method[D]. Chengdu: University of Electronic Science and Technology of China, 2021.
[27] Lin T Y, Dollar P, Girshick R, et al. Feature pyramid networks for object detection[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).IEEE, 2017:936-944.
[28] Tan M, Pang R, Le Q V. EfficientDet:Scalable and efficient object detection[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).IEEE, 2020:10778-10787.
[1] 刘立, 董先敏, 刘娟. 顾及地学特征的遥感影像语义分割模型性能评价方法[J]. 自然资源遥感, 2023, 35(3): 80-87.
[2] 牛祥华, 黄微, 黄睿, 蒋斯立. 基于注意力特征融合的高保真遥感图像薄云去除[J]. 自然资源遥感, 2023, 35(3): 116-123.
[3] 张仙, 李伟, 陈理, 杨昭颖, 窦宝成, 李瑜, 陈昊旻. 露天开采矿区要素遥感提取研究进展及展望[J]. 自然资源遥感, 2023, 35(2): 25-33.
[4] 刁明光, 刘勇, 郭宁博, 李文吉, 江继康, 王云霄. 基于Mask R-CNN的遥感影像疏林地智能识别方法[J]. 自然资源遥感, 2023, 35(2): 97-104.
[5] 张可, 张庚生, 王宁, 温静, 李宇, 杨俊. 基于遥感和深度学习的输电线路地表水深预测[J]. 自然资源遥感, 2023, 35(1): 213-221.
[6] 胡建文, 汪泽平, 胡佩. 基于深度学习的空谱遥感图像融合综述[J]. 自然资源遥感, 2023, 35(1): 1-14.
[7] 赵凌虎, 袁希平, 甘淑, 胡琳, 丘鸣语. 改进Deeplabv3+的高分辨率遥感影像道路提取模型[J]. 自然资源遥感, 2023, 35(1): 107-114.
[8] 吕雅楠, 朱红, 孟健, 崔成玲, 宋其淇. 面向高分辨率遥感影像车辆检测的深度学习模型综述及适应性研究[J]. 自然资源遥感, 2022, 34(4): 22-32.
[9] 谭海, 张荣军, 樊文锋, 张一帆, 徐航. 融合多尺度特征的国产光学影像辐射异常分类检测[J]. 自然资源遥感, 2022, 34(4): 97-104.
[10] 苏玮, 林阳阳, 岳文, 陈颖彪. 基于U-Net卷积神经网络的广东省海水养殖区识别及其时空变化遥感监测[J]. 自然资源遥感, 2022, 34(4): 33-41.
[11] 张鹏强, 高奎亮, 刘冰, 谭熊. 联合空谱信息的高光谱影像深度Transformer网络分类[J]. 自然资源遥感, 2022, 34(3): 27-32.
[12] 伊尔潘·艾尼瓦尔, 买买提·沙吾提, 买合木提·巴拉提. 基于GF-2影像和Unet模型的棉花分布识别[J]. 自然资源遥感, 2022, 34(2): 242-250.
[13] 孙宇, 黄亮, 赵俊三, 常军, 陈朋弟, 成飞飞. 结合随机擦除和YOLOv4的高空间分辨率遥感影像桥梁自动检测[J]. 自然资源遥感, 2022, 34(2): 97-104.
[14] 王华俊, 葛小三. 一种轻量级的DeepLabv3+遥感影像建筑物提取方法[J]. 自然资源遥感, 2022, 34(2): 128-135.
[15] 薛白, 王懿哲, 刘书含, 岳明宇, 王艺颖, 赵世湖. 基于孪生注意力网络的高分辨率遥感影像变化检测[J]. 自然资源遥感, 2022, 34(1): 61-66.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发