Please wait a minute...
 
自然资源遥感  2021, Vol. 33 Issue (3): 54-62    DOI: 10.6046/zrzyyg.2020309
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
尺度和密度约束下基于YOLOv3的风电塔架遥感检测方法
陈静1,2(), 陈静波1, 孟瑜1, 邓毓弸1,2, 节永师1,2, 张懿1,2
1.中国科学院空天信息创新研究院,北京 100101
2.中国科学院大学电子电气与通信工程学院,北京 101400
Detection of wind turbine towers in remote sensing based on YOLOv3 model under scale and density constraints
CHEN Jing1,2(), CHEN Jingbo1, MENG Yu1, DENG Yupeng1,2, JIE Yongshi1,2, ZHANG Yi1,2
1. Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China
2. School of Electronic,Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 101400, China
全文: PDF(7002 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

风电场分布是风电投资监测预警、占地监测和清洁能源消纳能力评价的重要依据,卫星遥感技术是大范围提取风电场分布信息的有效方法。风电塔架作为风电场的遥感解译标识,其在高分影像中是一种多尺度目标,且受影像获取时间、光照条件、地表覆盖等影响导致特征差异大,遥感自动检测难度大。针对以上问题,提出一种尺度和密度约束下基于YOLOv3模型的风电塔架自动检测方法。首先,在风电场遥感特征分析基础上,确定样本构建条件,分析风电塔架目标尺度; 然后,压缩YOLOv3模型特征提取网络以提高多尺度目标特征表征能力,并将目标尺寸作为先验知识输入模型; 最后,基于噪声与风电塔架的密度差异,采用DBSCAN密度聚类算法抑制误检。实验结果表明,该方法在典型试验区取得的风电塔架检测准确率为96%,召回率为94%,F1为95%,效果优于Faster R-CNN和FPN等基准模型,表明本文方法对于遥感影像复杂背景下的小目标具有良好的检测效果。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈静
陈静波
孟瑜
邓毓弸
节永师
张懿
关键词 目标检测YOLOv3DBSCAN风电塔架遥感    
Abstract

The distribution of wind farms is an important basis for the monitoring and early warning of wind power investment, the analyses of land occupation, and the assessment of clean energy consumption capacity. Remote sensing technology serves as an effective method for extracting wind farm distribution on a large scale. As the remote sensing interpretation marks of wind farms, wind turbine towers are a kind of multi-scale targets in high-resolution images. However, their characteristics greatly differ due to the effects of image acquisition time, illumination conditions, and surface coverage. Therefore, it's difficult to automatically detect wind turbine towers in remote sensing images. Aiming at the above problems, this paper proposed an automatic detection method of wind turbine towers based on the YOLOv3 model, and the steps are as follows. Firstly, determine the sample construction conditions and the target scale of wind turbine towers according to the analyses of the remote sensing characteristics of a wind farm. Secondly, optimize the depth of the feature extraction network of the YOLOv3 model to improve the characterization capacity of multi-scale targets. Finally, suppress false detections using the DBSCAN density clustering algorithm according to the density difference between noise and wind turbine towers. The experimental results show that the proposed method exhibits superiority over the benchmark models such as Faster R-CNN and FPN. With a detection accuracy rate of 96%, a recall rate of 94%, and F1 of 95%, the proposed method has good effects for the detection of small targets in the remote sensing images with complex background.

Key wordsobject detection    YOLOv3    DBSCAN    wind turbine tower    remote sensing
收稿日期: 2020-09-27      出版日期: 2021-09-24
ZTFLH:  TP751  
基金资助:国家重点研发计划课题“警用多无人机平台跨域协同及应用技术”(2018YFC0810104)
作者简介: 陈 静(1995-),女,硕士研究生,研究方向为遥感图像处理。Email: 18894335406@163.com
引用本文:   
陈静, 陈静波, 孟瑜, 邓毓弸, 节永师, 张懿. 尺度和密度约束下基于YOLOv3的风电塔架遥感检测方法[J]. 自然资源遥感, 2021, 33(3): 54-62.
CHEN Jing, CHEN Jingbo, MENG Yu, DENG Yupeng, JIE Yongshi, ZHANG Yi. Detection of wind turbine towers in remote sensing based on YOLOv3 model under scale and density constraints. Remote Sensing for Natural Resources, 2021, 33(3): 54-62.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2020309      或      https://www.gtzyyg.com/CN/Y2021/V33/I3/54
Fig.1  总体技术流程
Fig.2  典型风电场构成
Fig.3  不同时相影像中风电塔架及阴影尺度变化示意图
Fig.4  特征提取网络压缩前后结构对比
Fig.5  模型压缩前后特征图对比图
Fig.6  山地风电塔架遥感影像正射校正过程示意图
Fig.7  正射校正影像中风电塔架间距计算过程示意图
模型 P R F1值
YOLOv3 0.94 0.84 0.89
YOLOv3+anchor优化+网络深度压缩 0.95 0.94 0.95
Tab.1  YOLOv3与改进算法检测精度对比
Fig.8  检测框密度聚类结果及对应影像标注框
编号 标注真值 FPN Faster R-CNN YOLOv3 本文方法
1
2
3
4
Tab.2  塔架检测效果对比
[1] Chen J B, Yue A Z, Wang C Y, et al. Wind turbine extraction from high spatial resolution remote sensing images based on saliency detection[J]. Journal of Applied Remote Sensing, 2018, 12(1):016041-016041.
[2] 于野, 艾华, 贺小军, 等. A-FPN算法及其在遥感图像船舶检测中的应用[J]. 遥感学报, 2020, 24(2):107-115.
Yu Y, Ai H, He X J, et al. Attention-based feature pyramid networks for ship detection of optical remote sensing image[J]. Journal of Remote Sensing, 24(2):107-115.
[3] 董彪, 熊风光, 韩燮, 等. 基于改进Yolo v3算法的遥感建筑物检测研究[J]. 计算机工程与应用, 2020, 56(18):209-213.
Dong B, Xiong F G, Han X, et al. Research on remote sensing building detection based on improved Yolo v3 algorithm[J]. Computer Engineering and Applications, 2020, 56(18):209-213.
[4] 赵文博. 基于卷积神经网络的风力发电站遥感检测及其空间分布研究[D]. 广州:华南师范大学, 2019.
Zhao W B. Detection and spatial distribution of wind turbine based on convolutional neural network[D]. Guangzhou:South China Normal University, 2019.
[5] Redmon J, Farhadi A. YOLOv3:An incremental improvement[J]. arXiv,2018:arXiv:1804.02767.
[6] 张鹏. 基于卷积神经网络的光学遥感图像中机场目标识别研究[D]. 北京:国防科学技术大学, 2016.
Zhang P. Airport detection in optical remote sensing images with convolution neural network[D]. Beijing:National University of Defense Technology, 2016.
[7] 韩志华. 基于统计特征与桥梁方法的小目标检测算法研究[D]. 长春:中国科学院长春光学精密机械与物理研究所, 2019.
Han Z H. Research on small target detection algorithm based on statistical features and bridge method[D]. Changchun:Changchun Institute of Optics,Fine Mechanics and Physics,Chinese Academy of Sciences, 2019.
[8] Barret Z, Ekin D C, Golnaz G, et al. Learning data augmentation strategies for object detection:America,US2019354817[P]. 2019-11-21.
[9] 张翠, 邹涛, 王正志. 一种高分辨率SAR图像快速目标检测算法[J]. 遥感学报, 2005, 9(1):45-49.
Zhang C, Zou T, Wang Z Z. A fast target detection algorithm for high resolution SAR imagery[J]. Journal of Remote Sensing, 2005, 9(1):45-49.
[10] 张荫华, 杨萌. SAR图像舰船目标检测的信息几何方法[J]. 中国图象图形学报, 2020, 25(1):206-213.doi: 10.11834/jig.190131.
doi: 10.11834/jig.190131
Zhang Y H, Yang M. Information geometry method for ship detection in SAR images[J]. Journal of Image and Graphics, 2020, 25(1):206-213.doi: 10.11834/jig.190131.
doi: 10.11834/jig.190131
[11] 谢奇芳, 姚国清, 张猛. 基于Faster R-CNN的高分辨率图像目标检测技术[J]. 国土资源遥感, 2019, 31(2):38-43.doi: 10.6046/gtzyyg.2019.02.06.
doi: 10.6046/gtzyyg.2019.02.06
Xie Q F, Yao G Q, Zhang M. Research on high resolution image object detection technology based on Faster R-CNN[J]. Remote Sensing for Land and Resources, 2019, 31(2):38-43.doi: 10.6046/gtzyyg.2019.02.06.
doi: 10.6046/gtzyyg.2019.02.06
[12] 郑志强, 刘妍妍, 潘长城, 等. 改进YOLOV3遥感图像飞机识别应用[J]. 电光与控制, 2019, 26(4):28-32.doi: 10.3969/j.issn.1671-637X.2019.04.006.
doi: 10.3969/j.issn.1671-637X.2019.04.006
Zhang Z Q, Liu Y Y, Pan C C, et al. Application of improved YOLO V3 in aircraft recognition of remote sensing images[J]. Electronics Optics and Control, 2019, 26(4):28-32.doi: 10.3969/j.issn.1671-637X.2019.04.006.
doi: 10.3969/j.issn.1671-637X.2019.04.006
[13] 谌华. SAR图像目标自动检测与识别方法研究[D]. 北京:中国科学院国家空间科学中心, 2019.
Chen H. A study on methods of SAR image target automatic detection and recognition[D]. Beijing:National Space Science Center,Chinese Academy of Sciences, 2019.
[14] 吴柳青. 基于多尺度多特征融合的遥感影像建筑物自动提取[D]. 武汉:武汉大学, 2018.
Wu L Q. Automatic building extraction of remote sensing images based on fused multi-scale and multi-feature[D]. Wuhan:Wuhan University, 2018.
[15] 申原. 基于深度学习的遥感影像目标检测算法研究[D]. 深圳:中国科学院深圳先进技术研究院, 2020.
Shen Y. Research on object detection algorithm of remote sensing images based on deep learning[D]. Shenzhen:Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences, 2020.
[16] Ren S Q, He K M, Girshick R, et al. Faster R-CNN:Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6):1137-1149.
doi: 10.1109/TPAMI.2016.2577031
[17] Xie Y, Cai J, Bhojwani R, et al. A locally-constrained YOLO framework for detecting small and densely-distributed building footprints[J]. International Journal of Geographical Information Science, 2020, 34(4):777-801.
doi: 10.1080/13658816.2019.1624761
[18] Wu Z, Chen X, Gao Y, et al. Rapid target detection in high resolution remote sensing images using YOLO model[J]. International Archives of the Photogrammetry,Remote Sensing and Spatial Information Sciences, 2018, 42:3.
[19] 陈慧元, 刘泽宇, 郭炜炜, 等. 基于级联卷积神经网络的大场景遥感图像舰船目标快速检测方法[J]. 雷达学报, 2019, 8(3):413-424.doi: 10.12000/JR19041.
doi: 10.12000/JR19041
Chen H Y, Liu Z Y, Guo W W, et al. Fast detection of ship targets for large-scale remote sensing image based on a cascade convolutional neural network[J]. Journal of Radars, 2019, 8(3):413-424.doi: 10.12000/JR19041.
doi: 10.12000/JR19041
[1] 牛祥华, 黄微, 黄睿, 蒋斯立. 基于注意力特征融合的高保真遥感图像薄云去除[J]. 自然资源遥感, 2023, 35(3): 116-123.
[2] 董婷, 符潍奇, 邵攀, 高利鹏, 武昌东. 基于改进全连接条件随机场的SAR影像变化检测[J]. 自然资源遥感, 2023, 35(3): 134-144.
[3] 王建强, 邹朝晖, 刘荣波, 刘志松. 基于U2-Net深度学习模型的沿海水产养殖塘遥感信息提取[J]. 自然资源遥感, 2023, 35(3): 17-24.
[4] 唐晖, 邹娟, 尹向红, 余姝辰, 贺秋华, 赵动, 邹聪, 罗建强. 基于高分遥感的洞庭湖区河湖采砂监管及典型案例分析[J]. 自然资源遥感, 2023, 35(3): 302-309.
[5] 于航, 安娜, 汪洁, 邢宇, 许文佳, 步凡, 王晓红, 杨金中. 黔西南采煤塌陷区高分遥感动态监测——以六盘水市煤矿采空塌陷区为例[J]. 自然资源遥感, 2023, 35(3): 310-318.
[6] 王静, 王佳, 徐江琪, 黄邵东, 刘东云. 改进遥感生态指数的典型海岸带城市生态环境质量评价——以湛江市为例[J]. 自然资源遥感, 2023, 35(3): 43-52.
[7] 徐欣钰, 李小军, 赵鹤婷, 盖钧飞. NSCT和PCNN相结合的遥感图像全色锐化算法[J]. 自然资源遥感, 2023, 35(3): 64-70.
[8] 刘立, 董先敏, 刘娟. 顾及地学特征的遥感影像语义分割模型性能评价方法[J]. 自然资源遥感, 2023, 35(3): 80-87.
[9] 郭晓萌, 方秀琴, 杨露露, 曹煜. 基于人工神经网络的西辽河流域根区土壤湿度估算[J]. 自然资源遥感, 2023, 35(2): 193-201.
[10] 方贺, 张育慧, 何月, 李正泉, 樊高峰, 徐栋, 张春阳, 贺忠华. 浙江省植被生态质量时空变化及其驱动因素分析[J]. 自然资源遥感, 2023, 35(2): 245-254.
[11] 张仙, 李伟, 陈理, 杨昭颖, 窦宝成, 李瑜, 陈昊旻. 露天开采矿区要素遥感提取研究进展及展望[J]. 自然资源遥感, 2023, 35(2): 25-33.
[12] 马世斌, 皮英楠, 王佳, 张焜, 李生辉, 彭玺. 基于遥感的绿色勘查高效监管方法体系研究[J]. 自然资源遥感, 2023, 35(2): 255-263.
[13] 王平. 热红外遥感技术在钢铁去产能监测中的应用[J]. 自然资源遥感, 2023, 35(2): 271-276.
[14] 李天驰, 王道儒, 赵亮, 凡仁福. 基于Landsat8遥感数据的西沙群岛永乐环礁底质分类与变化分析[J]. 自然资源遥感, 2023, 35(2): 70-79.
[15] 刁明光, 刘勇, 郭宁博, 李文吉, 江继康, 王云霄. 基于Mask R-CNN的遥感影像疏林地智能识别方法[J]. 自然资源遥感, 2023, 35(2): 97-104.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发