Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2003, Vol. 15 Issue (1) : 43-45     DOI: 10.6046/gtzyyg.2003.01.11
Technology and Methodology |
A THERMAL INFRARED REMOTE SENSING STUDY OF BRAHMAPUTRA AND BANGONG-NUJIANG SUTURE BELT IN TIBET PLATEAU
BI Si-wen, YAN Hao, JING Dong-sheng, WANG Chang-yao
Institute of Remote Sensing Applications, Chinese Academy of Sciences, Beijing 100101, China
Download: PDF(884 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  It is found that the regional thermal abnormal variation in Tibet plateau doesn't accord with the former conclusion that the temperature of Brahmaputra suture belt in southern Tibet plateau is high whereas the temperature in northern Tibet is low. The authors hold that the temperature of the middle Bangong-Nujiang suture belt is the highest, that of Brahmaputra suture belt is lower and that of northern Tibet plateau is the lowest. The brahmaputra and Bangong-Nujiang suture belt in Tibet plateau is regarded as a demonstration region. The authors studied the land surface temperature, calculated the emissivity ε, measured the temperature of ground drilling holes and analyzed the data in order to reveal the mechanism between the thermal infrared remote sensing and the tectonic thermal dynamics.
Keywords ASTER-GDEM      ArcGIS      Slope      Geomorphic surface      Guizhou     
Issue Date: 02 August 2011
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YAN Peng
YANG Nong
YE Bao-Ying
Cite this article:   
YAN Peng,YANG Nong,YE Bao-Ying. A THERMAL INFRARED REMOTE SENSING STUDY OF BRAHMAPUTRA AND BANGONG-NUJIANG SUTURE BELT IN TIBET PLATEAU[J]. REMOTE SENSING FOR LAND & RESOURCES, 2003, 15(1): 43-45.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2003.01.11     OR     https://www.gtzyyg.com/EN/Y2003/V15/I1/43


[1] 李才,程立人,胡克,等.西藏龙木错-双湖古特提斯缝合带研究[M].北京:地质出版社,1995.





[2] 沈显杰.藏南湖底热流值的校正与结果[J].地球物理学报,1985,28(增刊1):93-107.





[3] 沈显杰.西藏中部地热区的钻孔热流测量[J].地质科学,1989,(4):407-416.





[4] 沈显杰,张文仁,杨淑贞,等.西藏热流数据最新报道[J].科学通报,1989,(5):373-376.





[5] 沈显杰,张文仁,杨涉贞,等.青藏高原南北地体壳幔热结构差异的大地热流证据[J].中国地质科学院院报,1999,(9):203-214.





[6] Becker F, Li Z L. Towards a local split window method over land Surface[J]. International Journal of Remote Sensing,1990,11:369-393.





[7] Van De Griend, A A Owe M.On the relation ship between thermal emissivity and the normalized difference Vegetation index for natural surface[J].International Journal of Remote Sensing,1993,14:1119-1121.





[8] Josef cihlar, Hung Ly, Zhanqing Li, et al.Multitemporal,Mulitichannel AVHRR data sets for land Biosphere studies-Artifacts and correction[J].Remote sensing of Environment,1997,60:35-57.





[9] Salisbury J W, D'Aria D M.Emissivity of terrestrial material in the 3~5min atmosphertic window[J].Remote sensing of Environment,1994,47:345-361.





[10] Becher F.The impact of Spectral emissivity on the measurement of Land surface temperature from a Satellite[J].International Journal of Remote Sensing,1987,8:1509-1522.





[11] Kalluri S N V, Dubayah R O.Comparison of atmospheric Correction models for thermal bands of the advanced Very high resolution radiometer[J].Journal of Geophysical Research,1995,100:25411-25418.
[1] DU Yi, WANG Dayang, WANG Dagang. Spatial downscaling of GPM precipitation products: A case study of Guizhou Province[J]. Remote Sensing for Natural Resources, 2021, 33(4): 111-120.
[2] Quan AN, Zhonghua HE, Cuiwei ZHAO, Hong LIANG, Shulin JIAO, Chaohui YANG. GIS-based estimation of fractal dimension and geomorphological development of the water system in the dam construction area[J]. Remote Sensing for Land & Resources, 2019, 31(4): 104-111.
[3] Linlin WU, Yunlan GUAN, Jiawei LI, Chenxin YUAN, Rui LI. Assessment of Karst rocky desertification based on MODIS: Exemplified by Guizhou Province[J]. Remote Sensing for Land & Resources, 2019, 31(4): 235-242.
[4] Xinxin SUI, Suwen SUI. Design and implementation of remote sensing interpretation map database based on MapGIS and ArcGIS[J]. Remote Sensing for Land & Resources, 2018, 30(4): 218-224.
[5] DIAO Mingguang, QU Di, XUE Tao, LI Jiancun, ZHANG Yongqiang. Plug-in style results data quality checking system for mine remote sensing monitoring based on AE[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(4): 219-224.
[6] DIAO Mingguang, XUE Tao, LI Jiancun, LI Wenji, LIANG Jiandong. Production data compilation system of mine remote sensing monitoring based on ArcGIS[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(3): 194-199.
[7] CAO Changlei, ZHAO Xuelian, MEI Hongbo. Research on data conversion from MapGIS to shapefile[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(2): 193-197.
[8] WU Xinqiang, ZHOU Ya, WANG Ruyi, ZHANG Huibing, QIN Xinguo. Conversion of data and symbol library from MapGIS to ArcGIS[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(4): 183-188.
[9] ZHANG Weige, YANG Liao, CAO Liangzhong, JIA Yang. An improved topographic correction based on the Three Factor + C model[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(2): 36-43.
[10] WAN Jie, LIAO Jingjuan, XU Tao, SHEN Guozhuang. Accuracy evaluation of SRTM data based on ICESat/GLAS altimeter data: A case study in the Tibetan Plateau[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(1): 100-105.
[11] KUANG Zhong, HUANG Xinxin, KUANG Shunda, LU Zhengyan, LONG Shengqing. Distribution characteristics of remote sensing information on weak mineralization and alteration in Guizhou[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(2): 140-147.
[12] LI Jiancun, TU Jienan, TONG Liqiang, GUO Zhaocheng. 20 year’s evolution features and influence factor analysis of rocky desertification in Guizhou[J]. REMOTE SENSING FOR LAND & RESOURCES, 2013, 25(4): 133-137.
[13] HAN Xiaojing, XING Lixin, PAN Jun, LIU Liwen, ZHOU Caicai, YU Yifan. Improved statistic-empirical topographic correction model and its application[J]. REMOTE SENSING FOR LAND & RESOURCES, 2013, 25(4): 187-191.
[14] DIAO Mingguang, XUE Tao, LI Jiancun, XU Cai, ZOU Senzhong, ZHAO Pengfei. The multi-source spatial data management system based on geological information metadata standard[J]. REMOTE SENSING FOR LAND & RESOURCES, 2013, 25(1): 165-170.
[15] LI Li, LIU Shao-feng, WEI Wei, XI Xiao-xu, DU Shou-yin. Interpretation of Landform of Sinuous Rilles on the Moon Based on Multi-data of Remote Sensing[J]. REMOTE SENSING FOR LAND & RESOURCES, 2012, 24(3): 16-21.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech