Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2011, Vol. 23 Issue (2) : 91-97     DOI: 10.6046/gtzyyg.2011.02.17
Technology Application |

The Extraction and Analysis of Iron Alteration Information Based on SPOT Data for Mineral Prediction:A Case Study of the Longnan Gold Ore District
LI Zhi-feng 1, ZHU Gu-chang 1,2, ZHANG Jian-guo 2, LIU Huan 1, HU Xing-hua 1
1.College of Geology and Environmental Engineering, Central South University, Changsha 410083, China; 2.China Non-ferrous Metals Resource Geological Survey, Beijing 100012, China
Download: PDF(4696 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Taking the Longnan gold ore district in Gansu Province as the study area, this paper carried out the study of extracting iron alteration information from satellite-based remote sensing images from SPOT data. Based on analyzing the geological background and rock alteration types, the authors used SPOT 5 satellite remote sensing images and, by utilizing a variety of image processing methods, extracted the iron alteration information closely related to gold mineralization and explored the feasibility of extracting alteration information from moderate and high resolution satellite data. The results show that, in comparison with ETM,ASTER and other satellite data, SPOT does not have a broader spectral range and higher spectral resolution,but can play an effective role in carrying out some specific tasks in particular area.

Keywords Land price      Spatial distribution      Influential factors     
: 

 

 
  TP 751  
  TP 79

 
Issue Date: 17 June 2011
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Cite this article:   
LI Zhi-Feng, ZHU Gu-Chang, ZHANG Jian-Guo, LIU Huan, HU Xing-Hua.
The Extraction and Analysis of Iron Alteration Information Based on SPOT Data for Mineral Prediction:A Case Study of the Longnan Gold Ore District[J]. REMOTE SENSING FOR LAND & RESOURCES,2011, 23(2): 91-97.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2011.02.17     OR     https://www.gtzyyg.com/EN/Y2011/V23/I2/91

[1]何凯涛,甘甫平,王永江.高空间分辨率卫星遥感地质微构造及蚀变信息识别[J].国土资源遥感,2009(1):97-99.

[2]叶发旺.ASTER数据与ETM数据蚀变信息提取的对比研究——以巴什布拉克铀矿区油气还原蚀变分析为例[J].地球信息科学学报,2009,11(3):274-281.

[3]耿新霞.ASTER数据在浅覆盖区蚀变遥感异常信息提取中的应用——以新疆西准噶尔包古图斑岩铜矿岩体为例[J].地质评论,2008,54(2):184-191.

[4]姜启明,鲁挑建.甘肃金山、马泉金矿床的对比研究[J].黄金科学技术,2010,18(1):22-26.

[5]苏建平,张翔.甘肃金矿成矿规律和成矿区带的划分[J].黄金地质,2003,9(3):1-8.

[6]肖美英.遥感技术在河北省唐山市地面变形灾害调查中的应用研究[D].长沙:中南大学,2007:45-45.

[7]张建国.遥感多光谱成矿信息提取与成矿预测[D].长沙:中南大学,2005:40-40.

[8]韦玉春,汤国安,杨昕,等.遥感数字图像处理教程[M].北京:科学出版社,2007:40-41.

[9]杨英莲,邱新法.SPOT 5卫星数据融合和彩色合成的方法及应用[J].青海环境,2007(1):29-30.

[10]李文昌,赵志芳,卢映祥,等.云南省遥感地质应用[M].北京:地质出版社,2009:38-39.

[11]王奎阳.从SPOT 5影像提取植被覆盖度技术研究[D].杭州:浙江大学,2007:25-25.

[12]罗卫,戴塔根,游先军.湘西金矿成矿规律与成矿预测研究[J].地质与资源,2007,16(1):42-46.

[13]黄贤芳,刘德长.控铀构造-蚀变带研究及找矿意义[J].世界核地质科学,2008,25(1):35-39.

[14]张小强.遥感技术在蚀变信息提取与成矿预测中的研究和应用——以兰坪多金属成矿带为例[D].北京:中国地质大学,2009:52-56.

[15]肖美英,朱谷昌,杨自安,等.青海省野马泉地区遥感找矿预测研究[J].矿产与地质,2007,21(4):468-471.

[1] WANG Shuang, ZHANG Lei, ZHANG Junyong, WANG Yile. Characteristics of GIS applications in national fitness[J]. Remote Sensing for Natural Resources, 2021, 33(4): 265-271.
[2] Ke ZHANG, Jianzhong LIU, Weiming CHENG. Morphological features and spatial distribution of the lunar Copernican secondary craters[J]. Remote Sensing for Land & Resources, 2019, 31(1): 255-263.
[3] Yuanwen ZENG, Yi DI, Yan HU, Jing CHEN, Songjiang DUAN. An analysis of spatial distribution and optimization of rural settlements:A case study of Niejia Village in Shitan Town,Hechuan District,Chongqing[J]. Remote Sensing for Land & Resources, 2018, 30(3): 113-119.
[4] Min YANG, Guijun YANG, Yanjie WANG, Yongfeng ZHANG, Zhihong ZHANG, Chenhong SUN. Remote sensing analysis of temporal-spatial variations of urban heat island effect over Beijing[J]. Remote Sensing for Land & Resources, 2018, 30(3): 213-223.
[5] Rui LIU, Xu JIANG, Jing ZHAO, Yunfan LI. GIS based research on the spatial distribution of population density in illegal buildings in Shenzhen City[J]. Remote Sensing for Land & Resources, 2018, 30(1): 233-237.
[6] YAO Zhenhai, QIU Xinfa, SHI Guoping, ZHANG Xiliang. An analysis of spatial distribution characteristics of monthly mean NDVI in the past ten years in China[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(2): 181-186.
[7] SHI Yunxia, WANG Fanxia, WU Zhaopeng. Multi-simulation of spatial distribution of land use based on CLUE-S in Jinhe Watershed[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(2): 154-160.
[8] YANG Bin, ZHAN Jinfeng, LI Maojiao. Evaluation of environmental vulnerability in the upper reaches of the Minjiang River[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(4): 138-144.
[9] GUO Zhaocheng, TONG Liqiang, ZHENG Xiongwei, QI Jianwei, WANG Jianchao. Remote sensing survey of secondary geological disasters triggered by Lushan earthquake in Sichuan Province and tentative discussion on disaster characteristics[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(3): 99-105.
[10] TONG Liqiang, NIE Hongfeng, LI Jiancun, GUO Zhaocheng. Survey of large-scale debris flow and study of its development characteristics using remote sensing technology in the Himalayas[J]. REMOTE SENSING FOR LAND & RESOURCES, 2013, 25(4): 104-112.
[11] LIU Dong, LI Yan, KONG Fanhua. Spatial distribution of land surface temperature in central city proper and the cooling of objects effect: A case study of Nanjing[J]. REMOTE SENSING FOR LAND & RESOURCES, 2013, 25(1): 117-122.
[12] DU Xiao-ya, LU Yue-jin . SPATIAL DISTRIBUTION OF LAND PRICES IN NANJING CITY PROPER AND ITS INFLUENTIAL FACTORS[J]. REMOTE SENSING FOR LAND & RESOURCES, 2004, 16(2): 51-55.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech