Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2011, Vol. 23 Issue (2) : 98-103     DOI: 10.6046/gtzyyg.2011.02.18
Technology Application |
The Extraction and Study of Geomorphic Surface in Guizhou and Its Adjacent Areas Based on ASTER-GDEM  

YAN Peng 1, YANG Nong 1, YE Bao-ying 2
1.Institute of Geomechanics, Chinese Academy of Geological Sciences, Beijing 100081, China; 2.China University of Geosciences, Beijing 100083, China
Download: PDF(3163 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

 The extensive distribution of geomorphic surface is the main geomorphologic characteristic of Guizhou and its adjacent areas,and the detailed study of this characteristic is very important in reconstructing Cenozoic evolution. Taking Guizhou and its adjacent areas as the study district, based on ASTER-GDEM data (30 m)  and using ArcGIS platform,the authors extracted the geomorphic surfaces with slope data and statistical method,and obtained the precise quantitative features of the geomorphic surfaces in this district for the first time. The results provide a new insight into the study of step-like landforms. It is shown that there are 4 steps of geomorphic surfaces in the study district, which suggests that Guizhou and its adjacent areas has experienced at least 3 times of complicated tectonic uplift since Cenozoic with the uplifted elevation being 300~500 m each time, and remain in the process of uplifting at present.

Keywords RS data      Fuzhou city      Ecological environment      RS/GIS      Linear regression     
: 

TP 79:P 931

 
Issue Date: 17 June 2011
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
JIANG Zhen-lan
SHA Jin-ming
YANG Wu-nian
Cite this article:   
JIANG Zhen-lan,SHA Jin-ming,YANG Wu-nian. The Extraction and Study of Geomorphic Surface in Guizhou and Its Adjacent Areas Based on ASTER-GDEM  [J]. REMOTE SENSING FOR LAND & RESOURCES, 2011, 23(2): 98-103.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2011.02.18     OR     https://www.gtzyyg.com/EN/Y2011/V23/I2/98

[1]Peter Molnar P,Tapponnier P.Cenozoic Tectonics of Asia:Effects of a Continental Collision[J].Science,1975,189:419-425.

[2]高明修.青藏高原东南缘现今地球动力学研究[J].地震地质,1996,18(2):130-131.

[3]杨宝嘉,吕伟.滇西北三江地区新构造运动特征[J].成都大学学报(自然科学),2006,9(3):130-131.

[4]徐叔鹰.论夷平面的成因、年龄与变形[J].兰州大学学报(自然科学版),1963(2):96-106.

[5]杨怀仁.贵州中部之地形发育[J].地理学报,1944,11(1):6-12.

[6]林树基.中新生代板块活动与贵州地貌之演化[J].贵州地质,1985,2(2):124-130.

[7]秦守荣.贵州的多级剥夷面[J].贵州地质,2002,19(2):86-88.

[8]李兴中.贵州高原喀斯特区地文期辨析[J].贵州地质,2001,18(3):182-186.

[9]Strahl E A N.Hypsometric (area-altitude) Analysis of Erosional Topography[J].Geological Society of America Bulletin,1952,63:1117-1141.

[10]Ahnert F.Functional Relationships Between Denudation,Relief and Uplift in Large Mid-latitute Drainage Basins[J].American Journal of Sciences,1970,268(3):243-263.

[11]Ahnert F.Local Relief and the Height Limit s of Mountain Ranges[J].American Journal of Science,1984,284(11):1035-1055.

[12]Koons P O.The Topographic Evolution of Collisional Mountain Belts:a Numerical Look at the Southern Alps,New Zealand[J].American Journal of Sciences,1989,289(11):1041-1069.

[13]Burban K D W.Characteristic Size of Relief[J].Nature,1994,359:483-484.

[14]Hurtre Z J E,Sol C,Lucazeau F.Effect of Drainage Area on Hypsometry from an Analysis of Small-scale Drainage Basins in the Siwalik Hills (Central Nepal)[J].Earth Surface Processes and Landforms,1999,24(9):799-808.

[15]Montgomery D R,Balco G,Willett S D.Climate,Tectonics and the Morphology of the Andes[J].Geology,2001,29(7):579-582.

[16]Brockl E S H,Whippl E K X.Hypsometry of glaciated landscapes[J].Earth Surface Processes and Landforms,2004,29(7):907-926.

[17]Fielding E,Isacks B,Barazangi M,et al.How Flat Is Tibet?[J].Geology,1994,22(2):163-167.

[18]汤国安,杨勤科,张勇,等.不同比例尺DEM提取地面坡度的精度研究——以在黄土丘陵沟壑区的实验为例[J].水土保持通报,2001,21(1):53-56.

[19]汤国安,陈楠,柳咏梅,等.黄土丘陵沟壑区1∶1万及1∶5万比例尺DEM地形信息容量对比[J].水土保持通报,2001,21(2):34-36.

[20]张会平,杨农,张岳桥,等.基于DEM的岷山构造带构造地貌初步研究[J].国土资源遥感,2004(4):54-57.

[21]刘静,丁林,曾令森,等.青藏高原典型地区的地貌量化分析——兼对高原“夷平面”的讨论[J].地学前缘,2006,9(5):287-295.

[22]郭芳芳,杨农,张岳桥,等.基于GIS的滑坡地质灾害地貌因素分析[J].地质力学学报,2008,14(1):87-95.

[23]熊康宁.新构造运动对贵州锥状喀斯特发育的影响[J].贵州地质,1996,13(2):181-187.

[24]秦守荣.贵州喀斯特与非喀斯特地貌分布面积及其特征分析[J].贵州教育学院学报,2001,12(4):44-46.

[25]卢耀如.中国南方喀斯特发育基本规律的初步研究[J].地质学报,1965,45(1):110-112.

[26]杨胜元,张建江,赵国宣,等.贵州环境地质[M].贵阳,贵州科技出版社,2008:35-38.

[27]黄明华.西南地区层状地貌之研究[J].铁道科学学报(自然科学版),1992,9(4):57-60.

[28]崔之久,高全洲,刘耕年,等.夷平面、古岩溶与青藏高原隆升[J].中国科学(D辑),1996,26(4)
:378-386.

 

[1] DU Yi, WANG Dayang, WANG Dagang. Spatial downscaling of GPM precipitation products: A case study of Guizhou Province[J]. Remote Sensing for Natural Resources, 2021, 33(4): 111-120.
[2] WANG Zheng, JIA Gongxu, ZHANG Qingling, HUANG Yue. Impacts of COVID-19 epidemic on the spatial distribution of GDP contributed by secondary and tertiary industries in Guangdong Province in the first quarter of 2020[J]. Remote Sensing for Natural Resources, 2021, 33(3): 184-193.
[3] YING Kui, LI Xudong, CHENG Dongya. Remote sensing assessment of ecological environment quality in karst trough basin[J]. Remote Sensing for Land & Resources, 2020, 32(3): 173-182.
[4] Jie CHEN, Zihong GAO, Shanshan WANG, Dingjian JIN. A review on the development of aerial remote sensing geological survey technology in the Three Gorges Reservoir area[J]. Remote Sensing for Land & Resources, 2020, 32(2): 1-10.
[5] Lu LIN, Zhanghua XU, Xuying HUANG, Fukang LYU, Qianfeng WANG, Qian LIN. Study of water storage effect of roof greening in the construction of Fuzhou sponge city[J]. Remote Sensing for Land & Resources, 2018, 30(2): 223-230.
[6] Junxia WANG, Xiufang ZHU, Xianfeng LIU, Yaozhong PAN. Research on agriculture drought monitoring method of Henan Province with multi-sources data[J]. Remote Sensing for Land & Resources, 2018, 30(1): 180-186.
[7] GAO Hui, ZHANG Jinghua, ZHANG Jianlong. Remote sensing ecological environment survey of county area based on ZY1-02C: A case study of Puge County[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(s1): 144-150.
[8] ZHAN Yating, ZHU Yefei, SU Yiming, CUI Yanmei. Eco-environmental changes in Yancheng coastal zone based on the domestic resource satellite data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(s1): 160-165.
[9] YANG Yuwei, DAI Xiaoai, NIU Yutian, LIU Hanhu, YANG Xiaoxia, LAN Yan. Inversion of leaf area index in Heihe Oasis based on CASI data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(4): 179-184.
[10] CHEN Mingye, CHEN Lei, ZHOU Xun. A remote sensing study of spatio-temporal changes of ecological environment of Shandian River[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(4): 166-172.
[11] LI Ru, ZHU Boqin, TONG Xiaowei, YUE Yuemin, GAN Huayang, WAN Sida. Change analysis in Hainan Dongzhai Wetland Reserve based on remote sensing data obtained during 2002-2013[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(3): 149-155.
[12] ZHA Dongping, SHEN Zhan, LIU Zugen, LIAO Bing, WANG Wei. Changes of ecological environment in the Dexing copper mine based on TM images[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(4): 109-114.
[13] XU Jianhui, SHU Hong, LI Yang. Mapping of monthly mean snow depth in Northern Xinjiang using a multivariate nonlinear regression Kriging model based on MODIS snow cover data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(3): 84-91.
[14] YANG Bin, ZHAN Jinfeng, LI Maojiao. Evaluation of environmental vulnerability in the upper reaches of the Minjiang River[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(4): 138-144.
[15] MA Lili, TIAN Shufang, WANG Na. Ecological environment evaluation of the mining area based on AHP and fuzzy mathematics[J]. REMOTE SENSING FOR LAND & RESOURCES, 2013, 25(3): 165-170.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech