Please wait a minute...
 
Remote Sensing for Land & Resources    2020, Vol. 32 Issue (4) : 199-208     DOI: 10.6046/gtzyyg.2020.04.25
|
Dynamic evaluation and prediction of ecological environment vulnerability in the middle-upper reaches of the Yalong River
YAO Kun1(), ZHANG Cunjie2(), HE Lei3, LI Yuxia4, LI Xiaoju5
1. College of Resource and Environment, Xichang University, Xichang 615000, China
2. National Climate Center, Beijing 100081, China
3. School of Software Engineering, Chengdu University of Information Technology, Chengdu 610103, China
4. School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
5. Engineering College, Universitiy Putra Malaysia, Kuala Lumpur 43400, Malaysia
Download: PDF(5712 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

In order to timely grasp the changes and future development of the ecological environment vulnerability, the authors selected 9 indicators, such as elevation, slope and land use type. Combining RS and GIS technology with AHP-PCA entropy weight model, the authors evaluated the vulnerability of the region in 2000—2018 dynamically, and introduced CA-Markov model for the development of 2021 simulation prediction. The following results have been achieved: ①The overall vulnerability of the region shows gradual decrease in gradient from north to south. ②The degree of vulnerability shows a gradual decrease in the proportion of micro, light, potential, moderate and severe grids. ③CA-Markov is not only suitable for predicting ecological vulnerability in the region, but also with high accuracy, and the proportion of potential, micro, mild, moderate and severe grids in 2021 is 20.18%, 38.02%, 25.71%, 10.96% and 5.13% respectively. ④Throughout the study period, the region’s vulnerability composite index is 2.539 2, 2.501 6, 2.485 6 , 2.460 7 and 2.436 6, respectively, and the 2021 value is 2.428 5. The continuous decrease of this value indicates that the overall ecological environment of the region has been effectively improved and will be in a state of change with sustained and good development. The study effectively reveals the law of dynamic change of ecological environment vulnerability in middle-upper reaches of the Yalong River Basin. With a more scientific analysis of its main drivers and future development, it can be used as an important theoretical reference for the formulation of ecological protection measures in the region.

Keywords RS      GIS      AHP-PCA entropy model      CA-Markov model      the middle-upper reaches of the Yalong River Basin     
:  TP79  
Corresponding Authors: ZHANG Cunjie     E-mail: jiangshan996@126.com;zhangcj@cma.gov.cn
Issue Date: 23 December 2020
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Kun YAO
Cunjie ZHANG
Lei HE
Yuxia LI
Xiaoju LI
Cite this article:   
Kun YAO,Cunjie ZHANG,Lei HE, et al. Dynamic evaluation and prediction of ecological environment vulnerability in the middle-upper reaches of the Yalong River[J]. Remote Sensing for Land & Resources, 2020, 32(4): 199-208.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2020.04.25     OR     https://www.gtzyyg.com/EN/Y2020/V32/I4/199
Fig.1  Geographical location of the study area
名称及描述 数据来源
雅砻江中上游流域90 m空间分辨率DEM数据 地理空间数据云平台(http: //www.gscloud.cn)
雅砻江中上游流域1∶100万矢量土壤类型数据 中国土壤数据库
2000—2018年研究区及周边气象观测数据 中国气象数据网(http: //data.cma.cn/)
2000—2018年研究区1∶10万土地利用类型矢量数据,分为水田、旱地、有林地和疏林地等22个二级类 中国科学院资源环境科学数据中心(http: //www.resdc.cn)
各年份6—8月的MODIS-NDVI数据,空间分辨率250 m,周期16 d,采用最大化合成获取最终成果数据 NASA
各年份各县的人口和GDP统计数据 《四川省统计年鉴》及各县统计公报等资料
全国1∶10万土壤侵蚀强度等级遥感解译成果矢量数据 国家地球系统科学数据共享平台 (http: //loess.geodata.cn)
Tab.1  Source and description of the basic data for research areas
Fig.2-1  Annual precipitation and average annual temperature spatial interpolation in the basin
Fig.2-2  Annual precipitation and average annual temperature spatial interpolation in the basin
指标 分级
1 2 3 4 5
土壤类型 泥炭土、草甸土、黑毡土和粗骨土 褐土 湖泊、水库、灰褐土、棕壤和棕色针叶林土 寒冻土、沼泽土、石质土和暗棕壤 草毡土
土地利用
类型
有林地、灌木林地和高度盖度草地 中覆盖度草地、疏林地、沼泽地和旱地 低覆盖度草地、河渠、湖泊、水库坑塘和滩地 城镇用地、农村居民点和其他建设用地 裸岩石质地
Tab.2  Land use and soil type classification in study area
Fig.3-1  Classification of indicators in the study area
Fig.3-2  Classification of indicators in the study area
决策层 方案层 指标层 权重
生态环境脆弱性 土地生态
(0.528 7)
NDVI 0.307 5
土地利用类型 0.163 4
土壤类型 0.057 9
气候
(0.268 7)
年降水量 0.089 6
年均气温 0.179 1
地形
(0.134 3)
高程 0.100 6
坡度 0.033 6
社会
(0.068 3)
GDP 0.045 5
人口 0.022 8
Tab.3  AHP calculation weight of each index in the study area
指标 W1j 2000年 2005年 2010年 2015年 2018年
W2j Wj W2j Wj W2j Wj W2j Wj W2j Wj
NDVI 0.307 5 0.064 4 0.163 1 0.076 8 0.173 8 0.077 8 0.176 5 0.061 3 0.161 8 0.077 9 0.177 2
土地利用类型 0.163 4 0.091 2 0.141 6 0.118 8 0.157 6 0.098 2 0.144 6 0.087 7 0.141 1 0.096 4 0.143 7
年降水量 0.089 6 0.119 7 0.120 1 0.059 3 0.082 5 0.071 7 0.091 5 0.079 1 0.099 3 0.067 9 0.089 3
DEM 0.100 6 0.060 8 0.090 7 0.094 6 0.110 3 0.084 2 0.105 0 0.058 9 0.090 7 0.082 6 0.104 4
年均气温 0.179 1 0.070 7 0.130 5 0.100 4 0.151 6 0.092 6 0.147 0 0.070 5 0.132 5 0.087 3 0.143 2
土壤类型 0.057 9 0.182 1 0.119 1 0.199 7 0.121 6 0.197 3 0.122 0 0.190 4 0.123 8 0.195 4 0.121 8
坡度 0.033 6 0.167 4 0.087 0 0.193 8 0.091 3 0.198 1 0.093 1 0.195 2 0.095 5 0.198 9 0.093 6
GDP 0.045 5 0.127 1 0.088 2 0.055 9 0.057 1 0.063 8 0.061 5 0.141 7 0.094 7 0.077 7 0.068 1
人口 0.022 8 0.116 6 0.059 8 0.100 7 0.054 2 0.116 4 0.058 8 0.115 1 0.060 4 0.115 8 0.058 8
Tab.4  Weight of indicators in the basin area from 2000 to 2018
Fig.4  Assessment results of ecological environment vulnerability in the middle and upper reaches of Yalong River from 2000 to 2018
等级 2000年 2005年 2010年 2015年 2018年
栅格数 比例/% 栅格数 比例/% 栅格数 比例/% 栅格数 比例/% 栅格数 比例/%
潜在 202 043 18.77 205 514 19.10 205 124 19.06 207 976 19.33 215 774 20.05
微度 395 374 36.74 398 513 37.03 405 941 37.72 413 468 38.42 412 936 38.37
轻度 266 690 24.78 275 921 25.64 273 948 25.46 271 215 25.20 271 778 25.26
中度 120 452 11.19 119 127 11.07 119 614 11.12 117 882 10.95 113 105 10.51
重度 91 576 8.51 77 060 7.16 71 508 6.64 65 594 6.10 62 535 5.81
Tab.5  Ratio of grid number of vulnerable areas at different levels in Yalong River Basin from 2000 to 2018
Fig.5  Simulation results of vulnerability prediction in 2015 and 2021
[1] 张笑楠, 王克林, 张伟, 等. 桂西北喀斯特区域生态环境脆弱性[J]. 生态学报, 2009,29(2):749-757.
[1] Zhang X N, Wang K L, Zhang W, et al. The quantitative assessment of eco-environment vulnerability in Karst regions of northwest Guangxi[J]. Acta Ecologica Sinica, 2009,29(2):749-757.
[2] 韦晶, 郭亚敏, 孙林, 等. 三江源地区生态环境脆弱性评价[J]. 生态学杂志, 2015,34(7):1968-1975.
url: http://www.cje.net.cn/CN/abstract/abstract7589.shtml
[2] Wei J, Guo Y M, Sun L, et al. Evaluation of ecological environment vulnerability for Sanjiangyuan area[J]. Chinese Journal of Ecology, 2015,34(7):1968-1975.
url: http://www.cje.net.cn/CN/abstract/abstract7589.shtml
[3] 谢人栋, 赵翠薇. 基于栅格尺度的喀斯特槽谷区生态环境脆弱性时空分异研究[J]. 长江科学院院报, 2018,35(4):48-53.
[3] Xie R D, Zhao C W. Spatio-temporal differentiation of ecological environment vulnerability in Karst trough region based on grid scale[J]. Journal of Yangtze River Scientific Research Institute, 2018,35(4):48-53.
[4] 林金煌, 胡国建, 祁新华, 等. 闽三角城市群生态环境脆弱性及其驱动力[J]. 生态学报, 2018,38(12):4155-4166.
[4] Lin J H, Hu G J, Qi X H, et al. Ecological environmental vulnerability and its driving forces in urban agglomeration in the Fujian Delta region[J]. Acta Ecologica Sinica, 2018,38(12):4155-4166.
[5] 邵秋芳, 彭培好, 黄洁, 等. 长江上游安宁河流域生态环境脆弱性遥感监测[J]. 国土资源遥感, 2016,28(2):175-181.doi: 10.6046/gtzyyg.2016.02.27.
[5] Shao Q F, Peng P H, Huang J, et al. Monitoring eco-environmental vulnerability in Anning River Basin in the upper reaches of the Yangtze River using remote sensing techniques[J]. Remote Sensing for Land and Resources, 2016,28(2):175-181.doi: 10.6046/gtzyyg.2016.02.27.
[6] 田超, 杨夏捷, 鞠园华, 等. 吉林省西部地区生态脆弱性的动态评价[J]. 水土保持研究, 2018,25(4):298-303.
[6] Tian C, Yang X J, Ju Y H, et al. Dynamic evaluation of ecological vulnerability in western Jilin Province[J]. Research of Soil and Water Conservation, 2018,25(4):298-303.
[7] 郭梦迪, 韩继冲, 施玥, 等. 基于DPRISM概念框架的生态环境脆弱性评价——以岷江上游为例[J]. 物探化探计算技术, 2019,41(1):128-134.
[7] Guo M D, Han J C, Shi Y, et al. Assessment of eco-environmental vulnerability based on DPRISM conceptual framework:A case study of upper Minjiang River[J]. Compute Techniques for Geophysical and Geochemical Exploration, 2019,41(1):128-134.
[9] 张梅, 罗怀良, 陈林. 资源型城市脆弱性评价——以攀枝花市为例[J]. 长江流域资源与环境, 2018,27(5):1170-1178.
[9] Zhang M, Luo H L, Chen L. Vulnerability assessment of resource-based city:A case study of Panzhihua[J]. Resources and Environment in the Yangtze Basin, 2018,27(5):1170-1178.
[10] 仙巍, 李涛, 邵怀勇. 基于SVM的安宁河流域生态环境脆弱性评价[J]. 环境科学与技术, 2014,37(11):180-184.
[10] Xian W, Li T, Shao H Y. Ecological frangibility evaluation of Anning River Basin in the Upper Yangtze River based on support vector machine[J]. Environmental Science and Technology, 2014,37(11):180-184.
[11] 陈金月, 王石英. 岷江上游生态环境脆弱性评价[J]. 长江流域资源与环境, 2017,26(3):471-479.
[11] Chen J Y, Wang S Y. Ecological environment vulnerability assessment in upper reaches of Minjiang River[J]. Resources and Environment in the Yangtze Basin, 2017,26(3):471-479.
[12] 杨斌, 詹金凤, 李茂娇. 岷江上游流域环境脆弱性评价[J]. 国土资源遥感, 2014,26(4):138-144.doi: 10.6046/gtzyyg.2014.04.22.
[12] Yang B, Zhan J F, Li M J. Evaluation of environmental vulnerability in the upper reaches of the Minjiang River[J]. Remote Sensing for Land and Resources, 2014,26(4):138-144.doi: 10.6046/gtzyyg.2014.04.22.
[13] 王志杰, 苏嫄. 南水北调中线汉中市水源地生态脆弱性评价与特征分析[J]. 生态学报, 2018,38(2):432-442.
[13] Wang Z J, Su Y. Analysis of eco-environmental vulnerability characteristics of Hanzhong City,near the water source midway along the route of the south-to-north water transfer project,China[J]. Acta Ecologica Sinica, 2018,38(2):432-442.
[14] 姚建, 丁晶, 艾南山. 岷江上游生态脆弱性评价[J]. 长江流域资源与环境, 2004(4):380-383.
[14] Yao J, Ding J, Ai N S. Assessment ecological vulnerability in the upper reaches of the Minjiang River[J]. Resources and Environment in the Yangtze Basin, 2004(4):380-383.
[15] 钟晓娟, 孙保平, 赵岩, 等. 基于主成分分析的云南省生态脆弱性评价[J]. 生态环境学报, 2011,20(1):109-113.
[15] Zhong X J, Sun B P, Zhao Y, et al. Ecological vulnerability evaluation based on principal component analysis in Yunnan Province[J]. Ecology and Environmental Sciences, 2011,20(1):109-113.
[16] 刘正佳, 于兴修, 李蕾, 等. 基于SRP概念模型的沂蒙山区生态环境脆弱性评价[J]. 应用生态学报, 2011,22(8):2084-2090.
pmid: 22097371
[16] Liu Z J, Yu X X, Li L, et al. Vulnerability assessment of eco-environment in Yimeng Mountainous area of Shandong Province based on SRP conceptual model[J]. Chinese Journal of Applied Ecology, 2011,22(8):2084-2090.
pmid: 22097371 url: https://www.ncbi.nlm.nih.gov/pubmed/22097371
[17] Shao H, Liu M, Shao Q, et al. Research on eco-environmental vulnerability evaluation of the Anning River Basin in the upper reaches of the Yangtze River[J]. Environmental Earth Sciences, 2014,72(5):1555-1568.
[18] Shao H, Sun X, Tao S, et al. Environmental vulnerability assessment in middle-upper reaches of Dadu River watershed using projection pursuit model and GIS[J]. Carpathian Journal of Earth and Environmental Sciences, 2015,10(4):143-146.
[19] Shao H, Sun X, Wang H, et al. A method to the impact assessment of the returning grazing land to grassland project on regional eco-environmental vulnerability[J]. Environmental Impact Assessment Review, 2016,56:155-167.
[20] 王晓, 牛玉欣, 李杨. 基于熵权计算的公路生态环境评价[J]. 西南大学学报(自然科学版), 2010,32(9):168-172.
[20] Wang X, Niu Y X, Li Y. Entropy weight-based evaluation of ecological environment along highways[J]. Journal of Southwest University (Natural Science Edition), 2010,32(9):168-172.
[21] 牛玉欣, 许金良, 杨宏志, 等. GIS支持下的公路生态环境评价[J]. 重庆大学学报, 2010,33(9):126-131.
[21] Niu Y X, Xu J N, Yang H Z, et al. GIS-based eco- environmental quality evaluation of highway[J]. Journal of Chongqing University, 2010,33(9):126-131.
[22] 欧定华, 夏建国, 欧晓芳. 基于GIS和RBF的城郊区生态安全评价及变化趋势预测——以成都市龙泉驿区为例[J]. 地理与地理信息科学, 2017,33(1):49-58.
[22] Ou D H, Xia J G, Ou X F. Regional ecological security assessment and change trend prediction in per-urban areas based on GIS and RBF:A case study in Longquanyi District of Chengdu City[J]. Geo-graphy and Geo-Information Science, 2017,33(1):49-58.
[23] 靳毅, 蒙吉军. 生态脆弱性评价与预测研究进展[J]. 生态学杂志, 2011,30(11):2646-2652.
[23] Jin Y, Meng J J. Assessment and forecast of ecological vulnerability:A review[J]. Chinese Journal of Ecology, 2011,30(11):2646-2652.
[24] 张晓娟, 周启刚, 王兆林, 等. 基于MCE-CA-Markov的三峡库区土地利用演变模拟及预测[J]. 农业工程学报, 2017,33(19):268-277.
[24] Zhang X J, Zhou Q G, Wang Z L, et al. Simulation and prediction of land use change in Three Gorges Reservoir Area based on MCE-CA-Markov[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017,33(19):268-277.
[25] 李峰, 刘小阳, 于雪涛, 等. 基于AHP-PCA模型的煤炭城市生态环境质量评价[J]. 矿业安全与环保, 2017,44(5):103-106,110.
[25] Li F, Liu X Y, Yu X T, et al. Eco-environmental quality evaluation of coal city based on AHP-PCA model[J]. Mining Safety and Environmental Protection, 2017,44(5):103-106,110.
[26] 夏兴生, 朱秀芳, 李月臣, 等. 基于AHP-PCA熵组合权重模型的三峡库区(重庆段)农业生态环境脆弱性评价[J]. 南方农业学报, 2016,47(4):548-556.
[26] Xia X S, Zhu X F, Li Y C, et al. Evaluation for vulnerability of agroecological environment in Three Gorges Reservoir area(Chongqing section)based on AHP-PCA entropy combination weight mode[J]. Journal of Southern Agriculture, 2016,47(4):548-556.
[27] 陈朝亮, 彭树宏, 钱静, 等. 基于AHP-Logistic熵权模型的西南浅丘区地质灾害分布特征研究——以内江市为例[J]. 长江科学院院报, 2020,37(2):55-61.
[27] Chen Z L, Peng S H, Qian J, et al. Distribution characteristics of geological hazards in southwestern shallow hill based on AHP-Logistic entropy combined weight model:A case study of Neijiang[J]. Journal of Yangtze River Scientific Research Institute, 2020,37(2):55-61.
[28] 侯成成, 赵雪雁, 张丽, 等. 基于熵组合权重属性识别模型的草原生态安全评价——以甘南黄河水源补给区为例[J]. 干旱区资源与环境, 2012,26(8):44-51.
[28] Hou C C, Zhao X Y, Zhang L, et al. Ecological security evaluation of grassland based on combined weight on principle of relative entropy:A case of Yellow River water source areas of Gannan[J]. Journal of Arid Land Resources and Environment, 2012,26(8):44-51.
[29] 吴开亚, 金菊良. 区域生态安全评价的熵组合权重属性识别模型[J]. 地理科学, 2008,28(6):754-758.
url: http://geoscien.neigae.ac.cn/CN/abstract/abstract8777.shtml
[29] Wu K Y, Jin J L. Attribute recognition method of regional ecological security evaluation based on combined weight on principle of relative entropy[J]. Scientia Geographica Sinica, 2008,28(6):754-758.
url: http://geoscien.neigae.ac.cn/CN/abstract/abstract8777.shtml
[30] 四川省人民政府. 四川省“十三五”生态保护与建设规划[EB/OL].[2017-04-19]. http://www.sc.gov.cn/zcwj/xxgk/NewT.aspx?i=20170421084123-670731-00-000.
url: http://www.sc.gov.cn/zcwj/xxgk/NewT.aspx?i=20170421084123-670731-00-000
[30] Sichuan Provincial People’s Government. Sichuan Province’s “13th Five-Year Plan” for ecological protection and construction[EB/OL].[2017-04-19]. http://www.sc.gov.cn/zcwj/xxgk/NewT.aspx?i=20170421084123-670731-00-000.
url: http://www.sc.gov.cn/zcwj/xxgk/NewT.aspx?i=20170421084123-670731-00-000
[31] 谭剑波, 李爱农, 雷光斌. 青藏高原东南缘气象要素Anusplin和Cokriging空间插值对比分析[J]. 高原气象, 2016,35(4):875-886.
doi: 10.7522/j.issn.1000-0534.2015.00037 url: http://gyqx.westgis.ac.cn/CN/abstract/abstract6086.shtml
[31] Tan J B, Li A N, Lei G B. Contrast on Anusplin and Cokriging meteorological spatial interpolation in southeastern margin of Qinghai-Xizang Plateau[J]. Plateau Meteorology, 2016,35(4):875-886.
doi: 10.7522/j.issn.1000-0534.2015.00037 url: http://gyqx.westgis.ac.cn/CN/abstract/abstract6086.shtml
[32] Li A N, Wang A S, Liang S L, et al. Eco-environmental vulnerability evaluation in mountainous region using remote sensing and GIS:A case study in the upper reaches of Minjiang River,China[J]. Ecological Modelling, 2006,192(1-2):175-187.
doi: 10.1016/j.ecolmodel.2005.07.005 url: https://linkinghub.elsevier.com/retrieve/pii/S0304380005003388
[33] 邓良基, 侯大斌, 王昌全, 等. 四川自然土壤和旱耕地土壤可蚀性特征研究[J]. 中国水土保持, 2003(7):27-29,48.
[33] Deng L J, Hou D B, Wang C Q, et al. Soil erodibility characteristics of natural soil and dryland in Sichuan Province[J]. Soil and Water Conservation in China, 2003(7):27-29,48.
[34] 马骏, 李昌晓, 魏虹, 等. 三峡库区生态脆弱性评价[J]. 生态学报, 2015,35(21):7117-7129.
doi: 10.5846/stxb201309252364 url: http://www.ecologica.cn/stxb/ch/reader/view_abstract.aspx?file_no=stxb201309252364&flag=1
[34] Ma J, Li C X, Wei H, et al. Dynamic evaluation of ecological vulnerability in the Three Gorges Reservoir Region in Chongqing Municipality,China[J]. Acta Ecologica Sinica, 2015,35(21):7117-7129.
[35] 任金铜, 莫世江, 陈群利, 等. 草海湿地区域土地利用/覆被变化与预测研究[J]. 信阳师范学院学报(自然科学版), 2017,30(3):385-392.
[35] Ren J T, Mo S J, Chen Q L, et al. Analysis and prediction of land use and land cover changes in Caohai Wetland areas[J]. Journal of Xinyang Normal University (Natural Science Edition), 2017,30(3):385-392.
[36] 艾丽娅, 王少军, 张志. 1997—2017年锡林郭勒盟中部草原植被覆盖时空演变及预测[J]. 水土保持通报, 2019,39(5):249-256.
[36] Ai L Y, Wang S J, Zhang Z. Spatial-temporal evolution and prediction of vegetation cover in central part of Xilingol grassland during 1997—2017[J]. Bulletin of Soil and Water Conservation, 2019,39(5):249-256.
[37] Wang L X, Yu D Y, Liu Z, et al. Study on NDVI changes in Weihe Watershed based on CA-Markov model[J]. Geological Journal, 2018,53:435-441.
[38] 龚雪梅, 冯文兰, 郑杰, 等. 岷江上游土壤侵蚀敏感性评价[J]. 干旱区资源与环境, 2017,31(9):68-74.
[38] Gong X M, Feng W L, Zheng J, et al. Assessment of soil erosion sensitivity in the upper reaches of Minjiang River[J]. Journal of Arid Land Resources and Environment, 2017,31(9):68-74.
[1] SUN Yiming, ZHANG Baogang, WU Qizhong, LIU Aobo, GAO Chao, NIU Jing, HE Ping. Application of domestic low-cost micro-satellite images in urban bare land identification[J]. Remote Sensing for Natural Resources, 2022, 34(1): 189-197.
[2] SONG Qi, FENG Chunhui, MA Ziqiang, WANG Nan, JI Wenjun, PENG Jie. Simulation of land use change in oasis of arid areas based on Landsat images from 1990 to 2019[J]. Remote Sensing for Natural Resources, 2022, 34(1): 198-209.
[3] ZHANG Qinrui, ZHAO Liangjun, LIN Guojun, WAN Honglin. Ecological environment assessment of three-river confluence in Yibin City using improved remote sensing ecological index[J]. Remote Sensing for Natural Resources, 2022, 34(1): 230-237.
[4] WU Yijie, KONG Xuesong. Simulation and development mode suggestions of the spatial pattern of “ecology-agriculture-construction” land in Jiangsu Province[J]. Remote Sensing for Natural Resources, 2022, 34(1): 238-248.
[5] YAO Jinxi, ZHANG Zhi, ZHANG Kun. An analysis of the characteristics, causes, and trends of spatio-temporal changes in vegetation in the Nuomuhong alluvial fan based on Google Earth Engine[J]. Remote Sensing for Natural Resources, 2022, 34(1): 249-256.
[6] HE Peng, TONG Liqiang, GUO Zhaocheng, TU Jienan, WANG Genhou. A study on hidden risks of glacial lake outburst floods based on relief amplitude: A case study of eastern Shishapangma[J]. Remote Sensing for Natural Resources, 2022, 34(1): 257-264.
[7] LI Dong, TANG Cheng, ZOU Tao, HOU Xiyong. Detection and assessment of the physical state of offshore artificial reefs[J]. Remote Sensing for Natural Resources, 2022, 34(1): 27-33.
[8] WANG Qian, REN Guangli. Application of hyperspectral remote sensing data-based anomaly extraction in copper-gold prospecting in the Solake area in the Altyn metallogenic belt, Xinjiang[J]. Remote Sensing for Natural Resources, 2022, 34(1): 277-285.
[9] QU Haicheng, WAND Yaxuan, SHEN Lei. Hyperspectral super-resolution combining multi-receptive field features with spectral-spatial attention[J]. Remote Sensing for Natural Resources, 2022, 34(1): 43-52.
[10] ZANG Liri, YANG Shuwen, SHEN Shunfa, XUE Qing, QIN Xiaowei. A registration algorithm of images with special textures coupling a watershed with mathematical morphology[J]. Remote Sensing for Natural Resources, 2022, 34(1): 76-84.
[11] REN Chaofeng, PU Yuchi, ZHANG Fuqiang. A method for extracting match pairs of UAV images considering geospatial information[J]. Remote Sensing for Natural Resources, 2022, 34(1): 85-92.
[12] SONG Renbo, ZHU Yuxin, GUO Renjie, ZHAO Pengfei, ZHAO Kexin, ZHU Jie, CHEN Ying. A method for 3D modeling of urban buildings based on multi-source data integration[J]. Remote Sensing for Natural Resources, 2022, 34(1): 93-105.
[13] CHEN Jie, ZHANG Lifu, ZHANG Linshan, ZHANG Hongming, TONG Qingxi. Research progress on online monitoring technologies of water quality parameters based on ultraviolet-visible spectra[J]. Remote Sensing for Natural Resources, 2021, 33(4): 1-9.
[14] GUO Xiaozheng, YAO Yunjun, JIA Kun, ZHANG Xiaotong, ZHAO Xiang. Information extraction of Mars dunes based on U-Net[J]. Remote Sensing for Natural Resources, 2021, 33(4): 130-135.
[15] GAO Wenlong, ZHANG Shengwei, LIN Xi, LUO Meng, REN Zhaoyi. The remote sensing-based estimation and spatial-temporal dynamic analysis of SOM in coal mining[J]. Remote Sensing for Natural Resources, 2021, 33(4): 235-242.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech