Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2012, Vol. 24 Issue (2) : 110-115     DOI: 10.6046/gtzyyg.2012.02.20
Technology Application |
Fractal Application in Lithological Classification and Alteration Extraction
ZHENG Gui-xiang1,3, CHI Tian-he1, LIN Qi-zhong2
1. Institute of Remote Sensing Applications, Chinese Academy of Sciences, Beijing 100101, China;
2. Center for Earth Observation and Digital Earth, Chinese Academy of Sciences, Beijing 100086, China;
3. Graduate University of Chinese Academy of Sciences, Beijing 100049, China
Download: PDF(4616 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  In order to promote the application of multi-fractal theory to remote sensing exploration, this paper takes the West Junggar Region as the study area to build fractal dimension spectra by analyzing the characteristics of the region and the remote sensing image. Combined with spectra, the authors completed the lithologic classification and pyrite alteration extraction of the region. And then mineral targets of the region was identified with the support of the existing statistical data of mines and expert’s experience and knowledge. Practice has proved that the appropriate prospecting model and criteria established on remote sensing images of fractal theory and spectral characteristics can satisfactorily supply decision support to regional mineral exploration.
Keywords airborne LiDAR      strip adjustment      the twelve parameters model     
:  TP 79  
Issue Date: 03 June 2012
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Sheng-yao
LIU Sheng-wei
CUI Xi-min
GUO Da-hai
ZHENG Xiong-wei
LU Xiao
Cite this article:   
WANG Sheng-yao,LIU Sheng-wei,CUI Xi-min, et al. Fractal Application in Lithological Classification and Alteration Extraction[J]. REMOTE SENSING FOR LAND & RESOURCES, 2012, 24(2): 110-115.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2012.02.20     OR     https://www.gtzyyg.com/EN/Y2012/V24/I2/110
[1] 何国金,薛重生.遥感地质学中若干问题的分形探讨[J].国土资源遥感,1993(3):46-55.
[2] 孙家柄,刘继琳,李军.多源遥感影像融合[J].遥感学报,1998,2(1):47-50.
[3] Peleg S,Naor J,Hartley R,et al.Multiple Resolution Texture Analysis and Classification [J].IEEE Trans PAMI,1984:6(4):518-523.
[4] 舒宁.卫星遥感影像纹理分析与分形分维方法[J].武汉测绘科技大学学报,1998,23(4):370-373.
[5] Chica O M,Abarca H F.Computing Geostatistical Image Texture for Remotely Sensed Data Classification[J]. Computers and Geosciences,2000,26(4):373-383.
[6] Dong P,Leblon B. Rock Unit Discrimination on Landsat TM, SIR-C and Radarsat Images Using Spectral and Textural Information[J]. int J Remote Sensing,2004,25(18):3745-3768.
[7] 沈远超,金成伟.西准噶尔地区岩浆活动与金矿化作用[M].北京:科学出版社,1993.
[8] 安芳,朱永峰.新疆哈图金矿蚀变岩型矿体地质和地球化学研究[J].矿床地质,2007,26(6):621-634.
[9] Mandelbrot B B.Fractals Form,Chance and Dimension [M].San Francisco:Freeman,1977.
[10] Pentland A P.Fractal Based Description of Natural Scenes [J].IEEE Trans, 1984:6(6):661-674.
[11] 李长江,麻土华,朱兴盛,等.矿产勘查中的分形、混沌与ANN[M].北京:地质出版社,1999.
[12] King G.The Accommodation of Large Strains in the Upper Lithosphere of the Earth and Other Solids by Self-similar Fault Systems:The Geometrical Origin of b-value[J].Pageoph,1983,121(5-6):761-815.
[13] 皇甫岗,韩明,王晋南.滇西北区断层分数维几何学的研究[J].地震地质,1991,13(1):61-66.
[14] 曾联波,金之均,李京昌,等.柴达木盆地北缘断裂构造分形特征与油气分布关系研究[J].地质科学,2001,36(2):241-247.
[15] 郭纯青,李文兴.岩溶含水介质与地下水系统理论研究[M].桂林:广西师范大学出版社,1996.
[16] 李社,管太阳,曹双林,等.基于RIS与分形的下庄矿田线性构造空间特征分析[J].遥感学报,2007,11(4):493-499.
[17] 余勇.高分辨率卫星遥感在高龙金矿及其外围找矿中的应用研究[D].桂林:桂林工学院,2005.
[18] 金章东,卢新卫,张传林.江西德兴斑岩铜矿田断裂分形研究[J].地质评论,1998,44(11):57-61.
[19] 夏玉成,樊怀仁,胡明星,等.霍州矿区断层构造的分形特征[J].西安矿业学院学报,1997,17(1):22-24.
[20] 高明星.东天山遥感影像线性构造提取及统计分析[D].乌鲁木齐:新疆大学,2005.
[21] Chaudhuri B B,Sarkar V.Texture Segmentation Using Fractal Dimension[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1995,17(1):72-77.
[22] 张哲儒,毛华海.分形理论与成矿作用[J].地学前缘,2000,7(1):195-204.
[23] 赵旭.关于分形统计学研究的若干问题[J].理论新探,2006(4):19-20.
[24] 谢淑云,鲍佂宇.多重分形与地球化学元素的分布规律[J].地质地球化学,2003,31(3):97-102.
[1] WU Fang, LI Yu, JIN Dingjian, LI Tianqi, GUO Hua, ZHANG Qijie. Application of 3D information extraction technology of ground obstacles in the flight trajectory planning of UAV airborne geophysical exploration[J]. Remote Sensing for Natural Resources, 2022, 34(1): 286-292.
[2] Lei MENG, Chao LIN. Discussion on quality inspection and solution of DEM generated by airborne LiDAR technology[J]. Remote Sensing for Land & Resources, 2020, 32(1): 7-12.
[3] Qi LI, Jianchao WANG, Yachao HAN, Zihong GAO, Yongjun ZHANG, Dingjian JIN. Potential evaluation of China’s coastal airborne LiDAR bathymetry based on CZMIL Nova[J]. Remote Sensing for Land & Resources, 2020, 32(1): 184-190.
[4] Lei DU, Jie CHEN, Minmin LI, Xiongwei ZHENG, Jing LI, Zihong GAO. The application of airborne LiDAR technology to landslide survey: A case study of Zhangjiawan Village landslides in Three Gorges Reservoir area[J]. Remote Sensing for Land & Resources, 2019, 31(1): 180-186.
[5] Li YAN, Yao LI, Hong XIE. Automatic reconstruction of LoD3 city building model based on airborne and vehicle-mounted LiDAR data[J]. Remote Sensing for Land & Resources, 2018, 30(4): 97-101.
[6] LI Jiajun, ZHONG Ruofei. Route design of light airborne LiDAR[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(2): 97-103.
[7] WANG Xue, LI Peijun, JIANG Shasha, LIU Jing, SONG Benqin. Building extraction using airborne LiDAR data and very high resolution imagery over a complex urban area[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(2): 106-111.
[8] DONG Baogen, CHE Sen, XIE Longgen, SHAN Guohui, HE Qiao. Mode filter and its application to post-processing of remote sensing classification[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(2): 62-66.
[9] TANG Feifei, RUAN Zhimin, ZHANG Yali, PENG Li. Automatic detection of change information for buildings based on airborne LiDAR and GIS data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(1): 57-62.
[10] CHEN Jie, XIAO Chunlei, LI Jing. Calibration of airborne LiDAR cloud point data with no calibration field[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(4): 27-33.
[11] WU Fang, ZHANG Zonggui, GUO Zhaocheng, AN Zhihong, YU Kun, LI Ting. Method of deriving DEM in the mining area based on filtering of airborne LiDAR data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(1): 62-67.
[12] CHENG Xiao-qian, FAN Liang-xin, ZHAO Hong-qiang. Filtering of Airborne LiDAR Data for Cityscapes Based on Segmentation[J]. REMOTE SENSING FOR LAND & RESOURCES, 2012, 24(3): 29-32.
[13] WANG Sheng-yao, LIU Sheng-wei, CUI Xi-min, GUO Da-hai, ZHENG Xiong-wei, LU Xiao. Airborne LiDAR Strip Adjustment Research: Based on Model Parameters and Ground Control Points Data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2012, 24(2): 19-22.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech