Please wait a minute...
Remote Sensing for Land & Resources    2018, Vol. 30 Issue (4) : 97-101     DOI: 10.6046/gtzyyg.2018.04.15
Automatic reconstruction of LoD3 city building model based on airborne and vehicle-mounted LiDAR data
Li YAN, Yao LI, Hong XIE
School of Geodesy and Geomatics, Wuhan University, Wuhan 430079, China
Download: PDF(2190 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    

With the rapid development of research fields such as smart city, intelligent navigation and automatic drive, the problem as to how to quickly achieve three dimensional space information of city buildings and build a high-precision 3D detailed model become a key problem. Based on the 2.5D features of airborne and vehicle-mounted LiDAR data, the authors established a technical scheme to generate 3D detailed model based on data integration with the using of 2.5D dual-contour method. The research shows that the method can express the details of the facade, such as the window and balcony, and has the advantages of simpleness, high efficiency and full automation.

Keywords building reconstruction      airborne LiDAR      vehicle-mounted LiDAR      data integration      automation     
:  TP79  
Issue Date: 07 December 2018
E-mail this article
E-mail Alert
Articles by authors
Yao LI
Hong XIE
Cite this article:   
Li YAN,Yao LI,Hong XIE. Automatic reconstruction of LoD3 city building model based on airborne and vehicle-mounted LiDAR data[J]. Remote Sensing for Land & Resources, 2018, 30(4): 97-101.
URL:     OR
Fig.1  Technical route of this study
Fig.2  Preprocessing results of the experimental data
Fig.3  Regularized triangulation model of the roof
数据源 扫描转换网格边长
机载LiDAR数据 1 0.5 1.5 0.3 5 0.05
车载LiDAR数据 0.4 0.1
Tab.1  Parts of experiment parameter settings
Fig.4  Images and simulation reconstruction result of the building
[1] 李德仁, 龚健雅, 邵振峰 . 从数字地球到智慧地球[J]. 武汉大学学报(信息科学版), 2010,35(2):127-132.
[1] Li D R, Gong J Y, Shao Z F . From digital earth to smart earth[J]. Geomatics and Information Science of Wuhan University, 2010,35(2):127-132.
[2] Gröger G, Kolbe T H, Nagel C , et al. OGC City Geography Markup Language (CityGML) Encoding Standard[S]. Open Geospatial Consortium, 2012.
[3] 杨必胜, 魏征, 李清泉 , 等. 面向车载激光扫描点云快速分类的点云特征图像生成方法[J]. 测绘学报, 2010,39(5):540-545.
doi: 10.1017/S0004972710001772 url:
[3] Yang B S, Wei Z, Li Q Q , et al. A classification-oriented method of feature image generation for vehicle-borne laser scanning point clouds[J]. Acta Geodaetica et Cartographica Sinica, 2010,39(5):540-545.
[4] Donkers S, Ledoux H, Zhao J , et al. Automatic conversion of IFC datasets to geometrically and semantically correct CityGML LOD3 buildings[J]. Transactions in GIS, 2015,20(4):547-569.
doi: 10.1111/tgis.12162 url:
[5] Musialski P, Wonka P, Aliaga D G , et al. A survey of urban reconstruction[J]. Computer Graphics Forum, 2013,32(6):146-177.
doi: 10.1111/cgf.12077 url:
[6] Wichmann A, Kada M. Joint simultaneous reconstruction of regularized building superstructures from low-density LiDAR data using ICP [C]//ISPRS Annals of Photogrammetry,Remote Sensing and Spatial Information Sciences.Prague:ISPRS, 2016: 371-378.
[7] Yan J X, Jiang W S, Shan J. A global solution to topological reconstruction of building roof models from airborne LiDAR point clouds [C]//ISPRS Annals of Photogrammetry,Remote Sensing and Spatial Information Sciences.Prague:ISPRS, 2016: 379-386.
[8] Xiong B . Reconstructing and Correcting 3D Building Models Using Roof Topology Graphs[D]. the Netherlands:ITC, 2014.
[9] Zhou Q Y, Neumann U. 2.5D dual contouring:A robust approach to creating building models from aerial LiDAR point clouds [C]//European Conference on Computer Vision.Heraklion:ECCV, 2010: 115-128.
[10] 龚健雅, 崔婷婷, 单杰 , 等. 利用车载移动测量数据的建筑物立面建模方法[J]. 武汉大学学报(信息科学版), 2015,40(9):1137-1143.
doi: 10.13203/j .whu g is20150173 url:
[10] Gong J Y, Cui T T, Shan J , et al. A survey on facade modeling using LiDAR point clouds and image sequences collected by mobile mapping systems[J]. Geomatics and Information Science of Wuhan University, 2015,40(9):1137-1143.
[11] 杨必胜, 董震, 魏征 , 等. 从车载激光扫描数据中提取复杂建筑物立面的方法[J]. 测绘学报, 2013,42(3):411-417.
[11] Yang B S, Dong Z, Wei Z , et al. Extracting complex building facades from mobile laser scanning data[J]. Acta Geodaetica et Cartographica Sinica, 2013,42(3):411-417.
[12] 岑子政 . 基于八叉树的车载激光点云数据建筑物立面建模算法研究[D]. 北京:首都师范大学, 2014.
[12] Cen Z Z . Research on the Building Facade Modeling Algorithm of the Vehicle-mounted Laser-point Cloud Data Based on Octree[D]. Beijing:Capital Normal University, 2014.
[13] 张志超 . 融合机载与地面LIDAR数据的建筑物三维重建研究[D]. 武汉:武汉大学, 2010.
[13] Zhang Z C . Three-dimensional Reconstruction of Buildings with Airborne and Ground LIDAR Data[D]. Wuhan:Wuhan University, 2010.
[14] 陈焱明 . 基于机载与车载LiDAR数据的建筑物模型多视三维重建研究[D]. 南京:南京大学, 2015.
[14] Chen Y M . Three-dimensional Multi-view Reconstruction of the Building Model Based on Airborne and Vehicle-mounted LiDAR Data[D]. Nanjing:Nanjing University, 2015.
[15] Zhang W, Qi J, Wan P , et al. An easy-to-use airborne LiDAR data filtering method based on cloth simulation[J]. Remote Sensing, 2016,8(6):501.
doi: 10.3390/rs8060501 url:
[16] Zhou Q Y, Neumann U. Fast and extensible building modeling from airborne LiDAR data [C]//ACM Sigspatial International Symposium on Advances in Geographic Information Systems.Irvine:DBLP, 2008: 7.
[17] 彭认灿, 董箭, 郑义东 , 等. 垂距法与道格拉斯-普克法删除冗余顶点效率的比较[J]. 测绘通报, 2010,56(3):66-67,70.
doi: 10.3969/j.issn.1004-3810.2014.08.033 url:
[17] Peng R C, Dong J, Zheng Y D , et al. The efficiency comparison of methods between perpendicular distance and Douglas-Peucker in deleting redundant vertexes[J]. Bulletin of Surveying and Mapping, 2010,56(3):66-67,71.
[1] WU Fang, LI Yu, JIN Dingjian, LI Tianqi, GUO Hua, ZHANG Qijie. Application of 3D information extraction technology of ground obstacles in the flight trajectory planning of UAV airborne geophysical exploration[J]. Remote Sensing for Natural Resources, 2022, 34(1): 286-292.
[2] SONG Renbo, ZHU Yuxin, GUO Renjie, ZHAO Pengfei, ZHAO Kexin, ZHU Jie, CHEN Ying. A method for 3D modeling of urban buildings based on multi-source data integration[J]. Remote Sensing for Natural Resources, 2022, 34(1): 93-105.
[3] Lei MENG, Chao LIN. Discussion on quality inspection and solution of DEM generated by airborne LiDAR technology[J]. Remote Sensing for Land & Resources, 2020, 32(1): 7-12.
[4] Qi LI, Jianchao WANG, Yachao HAN, Zihong GAO, Yongjun ZHANG, Dingjian JIN. Potential evaluation of China’s coastal airborne LiDAR bathymetry based on CZMIL Nova[J]. Remote Sensing for Land & Resources, 2020, 32(1): 184-190.
[5] Lei DU, Jie CHEN, Minmin LI, Xiongwei ZHENG, Jing LI, Zihong GAO. The application of airborne LiDAR technology to landslide survey: A case study of Zhangjiawan Village landslides in Three Gorges Reservoir area[J]. Remote Sensing for Land & Resources, 2019, 31(1): 180-186.
[6] LI Jiajun, ZHONG Ruofei. Route design of light airborne LiDAR[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(2): 97-103.
[7] WANG Xue, LI Peijun, JIANG Shasha, LIU Jing, SONG Benqin. Building extraction using airborne LiDAR data and very high resolution imagery over a complex urban area[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(2): 106-111.
[8] DONG Baogen, CHE Sen, XIE Longgen, SHAN Guohui, HE Qiao. Mode filter and its application to post-processing of remote sensing classification[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(2): 62-66.
[9] TANG Feifei, RUAN Zhimin, ZHANG Yali, PENG Li. Automatic detection of change information for buildings based on airborne LiDAR and GIS data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(1): 57-62.
[10] CHEN Jie, XIAO Chunlei, LI Jing. Calibration of airborne LiDAR cloud point data with no calibration field[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(4): 27-33.
[11] WU Fang, ZHANG Zonggui, GUO Zhaocheng, AN Zhihong, YU Kun, LI Ting. Method of deriving DEM in the mining area based on filtering of airborne LiDAR data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(1): 62-67.
[12] WANG Shoubiao, YANG Guang, TAN Haifeng, YE Yi, TONG Tao. Research on the integrated management model for multi-source image intelligence spatial data and its database prototype[J]. REMOTE SENSING FOR LAND & RESOURCES, 2013, 25(2): 174-179.
[13] CHENG Xiao-qian, FAN Liang-xin, ZHAO Hong-qiang. Filtering of Airborne LiDAR Data for Cityscapes Based on Segmentation[J]. REMOTE SENSING FOR LAND & RESOURCES, 2012, 24(3): 29-32.
[14] WANG Sheng-yao, LIU Sheng-wei, CUI Xi-min, GUO Da-hai, ZHENG Xiong-wei, LU Xiao. Airborne LiDAR Strip Adjustment Research: Based on Model Parameters and Ground Control Points Data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2012, 24(2): 19-22.
Full text



Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech