Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2012, Vol. 24 Issue (3) : 111-115     DOI: 10.6046/gtzyyg.2012.03.20
Technology Application |
Relationship Between Composition and Spectral Feature of Muscovite
LIANG Shu-neng1,2, GAN Fu-ping1,2, YAN Bo-kun1,2, WANG Run-sheng1, YANG Su-ming1, ZHANG Zhi-jun3
1. China Aero Geophysical Survey and Remote Sensing Center for Land and Resources, Beijing 100083, China;
2. Laboratory of the Earth Observation Technology of AGRS, Beijing 100083, China;
3. China University of Mining & Technology, Beijing 100083, China
Download: PDF(990 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  The aim of this study is the exploration of the intrinsic relationship between chemical composition and spectral features of rocks and minerals so as to detect mineral micro-information based on the hyperspectral remote sensing technology. Based on rock and mineral microscopic identification, the authors analyzed spectral features of muscovite from the rock sample by using TSG geological spectrum analysis software,and studied the chemical composition of muscovite by means of electron microprobe analysis. On such a basis, spectral variational features of muscovite were statistically analyzed. The results indicate that the diagnostic spectral wavelength position of muscovite moves towards the long wavelength with the reduction of Al cations.
Keywords position and orientation system(POS)      boresight misalignment      bundle adjustment      calibration      direct georeferencing(DG)     
:  TP79  
Issue Date: 20 August 2012
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHAO Hai-tao
ZHANG Bing
ZUO Zheng-li
CHEN Zheng-chao
Cite this article:   
ZHAO Hai-tao,ZHANG Bing,ZUO Zheng-li, et al. Relationship Between Composition and Spectral Feature of Muscovite[J]. REMOTE SENSING FOR LAND & RESOURCES, 2012, 24(3): 111-115.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2012.03.20     OR     https://www.gtzyyg.com/EN/Y2012/V24/I3/111
[1] 潘兆橹,赵爱醒,潘铁虹.结晶学及矿物学[M].北京:地质出版社,2005. Pan Z L,Zhao A X,Pan T H.Crystallography and Mineralogy[M].Beijing:Geological Publishing House,2005(in Chinese).
[2] Lucey P G.Model Near-infrared Optical Constants of Olivine and Pyroxene as a Function of Iron Content[J].Journal of Geophysical Research,1998,103(E1):1703-1713.
[3] Clark R N,King T V V,Klejwa M,et al.High Spectral Resolution Reflectance Spectroscopy of Minerals[J].Journal of Geophysical Research,1990,95(8B):12653-12680.
[4] Wald A E,Salisbury J W.Thermal Infrared Directional Emissivity of Powdered Quartz[J].Journal of Geophysical Research,1995,100(B12):24665-24675.
[5] 闫柏琨,陈伟涛,王润生,等.基于Hapke模型的矿物红外发射光谱随粒度与发射角的变异规律[J].地球科学:中国地质大学学报,2009,34(6):946-954. Yan B K,Chen W T,Wang R S,et al.Variation Law of Mineral Emissivity Spectra with Mineral Granularity and Emission Angle Based on Hapke Model[J].Earth Science:Journal of China University of Geosciences,2009,43(6):946-954(in Chinese with English Abstract).
[6] Denevi B W,Lucey P G,Hochberg E J,et al.Near-infrared Optical Constants of Pyroxene as a Function of Iron and Calcium Content[J].Journal of Geophysical Research,2007,112(E05009):1-13.
[7] Lane M D.Midinfared Optical Constants of Calcite and Their Relationship to Partical Size Effects in Thermal Emission Spectra of Granular Calcite[J].Journal of Geophysical Research,1999,104(E6):14099-14108.
[8] Yang K,Lian C,Huntington J F,et al.Infrared Spectral Reflectance Characterization of the Hydrothermal Alteration at the Tuwu Cu-Au Deposit,Xinjiang,China[J].Mineralium Deposita,2005,40(3):324-336.
[9] CSIRO.Ask"The Spectral Geologist"-TSGTM[EB/OL].http://www.csiro.au/resources/TSG.pdf,2010-11-01.
[1] Yachao HAN, Qi LI, Yongjun ZHANG, Zihong GAO, Dachang YANG, Jie CHEN. Geometric calibration method of airborne hyperspectral instrument and its demonstration application in coastal airborne remote sensing survey[J]. Remote Sensing for Land & Resources, 2020, 32(1): 60-65.
[2] XUE Wu, MA Yongzheng, ZHAO Ling, MO Delin. UAV-based rural homestead ownership determination[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(3): 124-127.
[3] SHAO Yanpo, HONG Youtang. PIF method for relative radiometric correction of remote sensing images[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(1): 7-13.
[4] HAN Jie, XIE Yong, WU Guoxi, LIU Qiyue, GAO Hailiang, GUAN Xiaoguo. Geo-positioning accuracy analysis for domestic high-resolution satellite imagery[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(4): 100-107.
[5] ZHANG Bingxian, LI Yan, HE Hongyan. Radiometric calibration method of thermal-infrared images based on on-orbit classification and statistics[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(4): 24-29.
[6] DU Weina, XU Aigong, SONG Yaoxin, SUN Huasheng. Absolute radiometric calibration of level-1 detected ground range products of new SAR sensors[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(4): 30-34.
[7] CHEN Jie, XIAO Chunlei, LI Jing. Calibration of airborne LiDAR cloud point data with no calibration field[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(4): 27-33.
[8] XU Zhenliang, LI Yanhuan, YAN Li, YAN Lei. PCG sparse algorithm for close-range block bundle adjustment[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(1): 44-47.
[9] ZHAO Hai-tao, ZHANG Bing, ZUO Zheng-li, CHEN Zheng-chao. POS System Boresight Misalignment Calibration with Bundle Adjustment Method[J]. REMOTE SENSING FOR LAND & RESOURCES, 2012, 24(3): 22-28.
[10] MA Xiao-hong, YU Tao, GAO Hai-liang, CHEN Xing-feng, XIE Yu-juan, HAN Jie. Characterization Evaluation and Potential Application Analysis of the Inner Mongolia Radiometric Calibration Site[J]. REMOTE SENSING FOR LAND & RESOURCES, 2011, 23(4): 31-36.
[11] CHEN Xin-Feng, GU Hang-Fa, GE Hui-Bin, ZHENG Feng-Jie, ZHANG Jin-Jin, LIU Jun. Multi-image Space Resection Based Geometric Calibration for the Four Band CCD Camera[J]. REMOTE SENSING FOR LAND & RESOURCES, 2011, 23(1): 21-25.
[12] HOU Dong, SONG Guo-Bao, DONG Yan-Sheng, GU Jian-Yu.
Precision Analysis of Different Radiation Parameters Landsat Thematic Mapper Sensor
[J]. REMOTE SENSING FOR LAND & RESOURCES, 2010, 22(4): 14-18.
[13] YANG Hang, Zhang-Xia, He-Hai-Xia, Zhang-Li-Fu, Tong-Qing-Xi. The Optimal Choice of Edge-Radiation-Distortion Correction Methods
for OMIS-II Hyperspectral Images
[J]. REMOTE SENSING FOR LAND & RESOURCES, 2010, 22(2): 17-21.
[14] FAN Jing-Hui, LI Mei, GUO Xiao-Fang, GE Da-Qing, LIU Sheng-Wei, LIU Guang, GUO Hua-Dong. A PRELIMINARY STUDY OF THE SUBSIDENCE IN TIANJIN AREA USING ASAR IMAGES BASED ON PSInSAR TECHNIQUE[J]. REMOTE SENSING FOR LAND & RESOURCES, 2007, 19(4): 23-27.
[15] LEI Xue-wu, WU Jun-li, LIU Jun-rong. THE APPLICATION OF CBERS-1 CCD ON-STAR CALIBRATION DATA TO THE IMAGE RADIATE RECTIFICATION[J]. REMOTE SENSING FOR LAND & RESOURCES, 2003, 15(3): 63-66.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech