Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2016, Vol. 28 Issue (4) : 24-29     DOI: 10.6046/gtzyyg.2016.04.04
Technology and Methodology |
Radiometric calibration method of thermal-infrared images based on on-orbit classification and statistics
ZHANG Bingxian, LI Yan, HE Hongyan
Beijing Institute of Space Mechanics and Electricity, Beijing 100076, China
Download: PDF(3656 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Relative radiometric calibration precision will affect the application of satellite images, and hence high precision relative radiometric is very important. Nowadays, the ordinary radiometric calibration method of the thermal-infrared images is the on-orbit radiometric calibration which has fewer sample data and lower accuracy, therefore the result of on-orbit radiometric calibration can't satisfy the application requirement. In view of such a situation, a new radiometric calibration method of the thermal-infrared images based on classification and statistics is proposed in this paper. The new method adopts the original satellite images as sample data to calculate the parameters based on rich types of surface feature in satellite images to solve the problem of insufficient sample data of on-orbit radiometric calibration, meanwhile it introduces classification into the construction of the new calibration model by considering the different characteristics of photoelectric response function that the satellite payload will have in different radiometric energy so as to improve the precision of radiometric calibration. The experimental results show that the proposed method performs better than the ordinary on-orbit radiometric calibration method.

Keywords hyperspectral remote sensing      spectral characteristics      wetland vegetation      HyMap     
:  TP751.1  
  P236  
Issue Date: 20 October 2016
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CHAI Ying
RUAN Renzong
CHAI Guowu
FU Qiaoni
Cite this article:   
CHAI Ying,RUAN Renzong,CHAI Guowu, et al. Radiometric calibration method of thermal-infrared images based on on-orbit classification and statistics[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(4): 24-29.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2016.04.04     OR     https://www.gtzyyg.com/EN/Y2016/V28/I4/24

[1] Horn B K P,Woodham R J.Destriping Landsat MSS images by histogram modification[J].Computer Graphics and Image Processing,1979,10(1):69-83.
[2] Singh A.Thematic Mapper radiometric correction research and development results and performance[J].Photogrammetric Engineering and Remote Sensing,1985,51:1379-1383.
[3] 郭建宁,于晋,曾湧,等.CBERS-01/02卫星CCD图像相对辐射校正研究[J].中国科学E辑:信息科学, 2005,35(s1):11-25. Guo J N,Yu J,Zeng Y,et al.Study on the relative radiometric correction of CBERS satellite CCD image[J].Science in China Series E Engineering & Materials Science,2005,48(s2):12-28.
[4] 潘志强,顾行发,刘国栋,等.基于探元直方图匹配的CBERS-01星CCD数据相对辐射校正方法[J].武汉大学学报:信息科学版,2005,30(10):925-927. Pan Z Q,Gu X F,Liu G D,et al.Relative radiometric correction of CBERS-01 CCD data based on detector histogram matching[J].Geomatics and Information Science of Wuhan University,2005,30(10):925-927.
[5] Weinreb M P,Xie R,Lienesch J H,et al.Destriping GOES images by matching empirical distribution functions[J].Remote Sensing of Environment,1989,29(2):185-195.
[6] Wegener M.Destriping multiple sensor imagery by improved histogram matching[J].International Journal of Remote Sensing,1990,11(5):859-875.
[7] Weinreb M,Hamilton G,Brown S,et al.Nonlinearity corrections in calibration of advanced very high resolution radiometer infrared channels[J].Journal of Geophysical Research,1990,95(c5):7381-7388.
[8] Wack E C.SWIR nonlinear radiometric response due to errors in relative spectral response[C]//Proceedings of SPIE 3117,Earth Observing Systems Ⅱ.San Diego,CA, USA:SPIE,1997,3117:217-224.
[9] Raytheon S T X.CBESR Radiometric Algorithm Theoretical Basis Document[M].Beijing:National Association of Local Remote Sensing Application,2002:87-93.
[10] 王小燕,龙小祥.资源一号02B星相机相对辐射校正方法分析[J].航天返回与遥感,2008,29(2):29-34. Wang X Y,Long X X.Analysis of relative radiometric correction method of CBERS-02B camera[J].Spacecraft Recovery & Remote Sensing,2008,29(2):29-34.
[11] 王密,张炳先,潘俊.基于分段辐射校正的星载TDI-CCD成像数据辐射处理方法[J].中国科学:信息科学,2011,41(s):32-41. Wang M,Zhang B X,Pan J.Radiometric correction method of TDI-CCD imaging data based on segmentation[J].Science China Series E Engineering & Materials Science,2011,41(s):32-41.

[1] WANG Qian, REN Guangli. Application of hyperspectral remote sensing data-based anomaly extraction in copper-gold prospecting in the Solake area in the Altyn metallogenic belt, Xinjiang[J]. Remote Sensing for Natural Resources, 2022, 34(1): 277-285.
[2] GAO Wenlong, ZHANG Shengwei, LIN Xi, LUO Meng, REN Zhaoyi. The remote sensing-based estimation and spatial-temporal dynamic analysis of SOM in coal mining[J]. Remote Sensing for Natural Resources, 2021, 33(4): 235-242.
[3] DU Cheng, LI Delin, LI Genjun, YANG Xuesong. Application and exploration of dissolved oxygen inversion of plateau salt lakes based on spectral characteristics[J]. Remote Sensing for Natural Resources, 2021, 33(3): 246-252.
[4] JIANG Yanan, ZHANG Xin, ZHANG Chunlei, ZHONG Chengcheng, ZHAO Junfang. Classification of remote sensing images based on multi-scale feature fusion using local binary patterns[J]. Remote Sensing for Natural Resources, 2021, 33(3): 36-44.
[5] ZANG Chuankai, SHEN Fang, YANG Zhengdong. Aquatic environmental monitoring of inland waters based on UAV hyperspectral remote sensing[J]. Remote Sensing for Natural Resources, 2021, 33(3): 45-53.
[6] HU Xinyu, XU Zhanghua, CHEN Wenhui, CHEN Qiuxia, WANG Lin, LIU Hui, LIU Zhicai. Construction and application effect of normalized shadow vegetation index NSVI based on PROBA/CHRIS image[J]. Remote Sensing for Land & Resources, 2021, 33(2): 55-65.
[7] WANG Ruijun, ZHANG Chunlei, SUN Yongbin, WANG Shen, DONG Shuangfa, WANG Yongjun, YAN Bokun. Application of hyperspectral spectroscopy to constructing polymetallic prospecting model in Hongshan, Gansu Province[J]. Remote Sensing for Land & Resources, 2020, 32(3): 222-231.
[8] Donghui ZHANG, Yingjun ZHAO, Kai QIN. Design and construction of the typical ground target spectral information system[J]. Remote Sensing for Land & Resources, 2018, 30(4): 206-211.
[9] Jing CUI, Xinfeng DONG, Rui DING, Shimin ZHANG, Conghe WANG, Hengxin LU, Yanyun SUN. Stratigraphic division of loess along loess profile based on hyperspectral remote sensing[J]. Remote Sensing for Land & Resources, 2018, 30(2): 202-207.
[10] SUN Xiaofang. Urban features classification based on objects segmentation and hyperspectral characteristics[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(3): 171-175.
[11] REN Guangli, YANG Min, LI Jianqiang, GAO Ting, LIANG Nan, YI Huan, YANG Junlu. Application of hyperspectral alteration information to gold prospecting: A case study of Fangshankou area,Beishan[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(3): 182-190.
[12] TAO Ting, RUAN Renzong, SUI Xiuzhen, WANG Yuqiang, LIN Peng. Extraction of floating-leaved vegetation information based on HyMap data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(2): 187-192.
[13] SU Hongjun, LIU Hao. A novel dynamic classifier selection algorithm using spatial-spectral information for hyperspectral classification[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(2): 15-21.
[14] LIN Na, YANG Wunian, WANG Bin. Pixel un-mixing for hyperspectral remote sensing image based on kernel method[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(1): 14-20.
[15] HE Hao, SHEN Yonglin, LIU Xiuguo, MA Li. Spatial-spectral constrained graph-based semi-supervised classification for hyperspectral image[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(3): 31-36.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech