Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2012, Vol. 24 Issue (3) : 116-121     DOI: 10.6046/gtzyyg.2012.03.21
Technology Application |
Study of Qinghai-Tibet Plateau Uplift Response to Eco-geological Environment Based on Remote Sensing
ZHAO Fu-yue1, ZHANG Rui-jiang1, CHEN Hua1, SUN Yan-gui2
1. China Aero Geophysical Survey and Remote Sensing Center for Land and Resources, Beijing 100083, China;
2. Institute of Geological Survey of Qinghai Province, Xining 810012, China
Download: PDF(1062 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  The rapid uplift of the Qinghai-Tibet Plateau has changed the morphologic units, the tectonic frameworks, the rivers strike, the Asian monsoon and the climate. On the basis of the survey and monitoring results of eco-geological environment and from the angle of the uplift of the Qinghai-Tibet Plateau, this paper systematically describes the eco-geological environment features, the response of eco-geological environment and its regularity in the Qinghai-Tibet Plateau. The results show that the geological environment of the Qinghai-Tibet Plateau is the foundation controlling the formation, development and evolution of ecological environment of the Qinghai-Tibet Plateau and its surrounding areas. The rapid uplift of the Qinghai-Tibet Plateau has provided external factors for modern glaciers, desertification and geological disasters. Besides, the climatic environment of the Qinghai-Tibet Plateau is the power source of ecological environment change in China. Human activities have played a catalytic role in ecological environment change in the Qinghai-Tibet Plateau and its surrounding areas.
Keywords airborne LiDAR      point cloud data      edge detection      region growing      filtering     
:  TP79  
Issue Date: 20 August 2012
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CHENG Xiao-qian
FAN Liang-xin
ZHAO Hong-qiang
Cite this article:   
CHENG Xiao-qian,FAN Liang-xin,ZHAO Hong-qiang. Study of Qinghai-Tibet Plateau Uplift Response to Eco-geological Environment Based on Remote Sensing[J]. REMOTE SENSING FOR LAND & RESOURCES, 2012, 24(3): 116-121.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2012.03.21     OR     https://www.gtzyyg.com/EN/Y2012/V24/I3/116
[1] 方洪宾,赵福岳,孙延贵,等.青藏高原第四纪地壳运动与沉积响应[M].北京:地质出版社,2009. Fang H B,Zhao F Y,Sun Y G,et al.Quaternary Crustal Movements and Sedimentary Response in Qinghai-Tibet Plateau[M].Beijing:Geological Publishing,2009(in Chinese).
[2] 郑度.青藏高原形成环境与发展[M].石家庄:河北科学技术出版社,2003. Zheng D.Qinghai-Tibet Plateau Formation Environment and Development[M].Shijiazhuang: Hebei Science and Technology Press,2003(in Chinese).
[3] 张宗祜,邵时雄,陈云,等.中国北方晚更新世以来地质环境演化与未来生存环境变化趋势预测[M].北京:地质出版社,1999. Zhang Z H,Shao S X,Chen Y,et al.The Evolution of the Geological Environment and the Change of the Future Survival Environment Since the Late Pleistocene in Northern China[M].Beijing:Geological Publishing House,1999(in Chinese).
[4] 周淑贞,张如一,张超.气象学与气候学[M].北京:高等教育出版社,1997. Zhou S Z,Zhang R Y,Zhang C.Meteorology and Climatology[M].Beijing:Higher Education Press,1997(in Chinese).
[5] 方洪宾,赵福岳,张振德,等.青藏高原现代生态地质环境遥感调查与演变研究[M].北京:地质出版社,2009. Fang H B,Zhao F Y,Zhang Z D,et al.Remote Sensing Survey and Evolution Study of Ecological and Geological Environment in Qinghai-Tibet Plateau[M].Beijing:Geological Publishing House,2009(in Chinese).
[6] 施雅风.青藏高原晚新生代隆升与环境变化[M].广州:广东科技出版社,1998. Shi Y F.The Late Cenozoic Uplift and Environmental Change in Qinghai-Tibet Plateau[M].Guangzhou:Guangdong Science and Technology Press,1998(in Chinese).
[7] 秦大河,陈伟烈,丁一汇,等.中国西部环境演变评估综合报告[M].北京:科学出版社,2002. Qin D H,Chen W L,Ding Y H,et al.The Assessment Report on Environmental Evolution in Western China[M].Beijing:Science Press,2002 (in Chinese).
[8] 丁一汇,陈伟烈,董光荣,等.中国西部环境变化的预测[M].北京:科学出版社,2002. Ding Y H,Chen W L,Dong G R,et al.Prediction of the Environmental Change in Western China[M].Beijing: Science Press,2002 (in Chinese).
[9] 赵福岳,路云阁,姜德仁,等.松辽平原区荒漠化形成与发展的地质基础[J].国土资源遥感,2008(3):90-93. Zhao F Y,Lu Y G,Jiang D R,et al.Geological Causes for the Formation and Development of Desertification in Songliao Plain[J].Remote Sensing for Land and Resources,2008(3):90-93(in Chinese with English Abstract).
[10] 张瑞江,方洪宾,赵福岳,等.青藏高原近30年来现代冰川面积的遥感调查[J].国土资源遥感,2010(s1):45-48. Zhang R J,Fang H B,Zhao F Y,et al.Remote Sensing Survey of Existing Glaciers in Qinghai-Tibet Plateau[J].Remote Sensing for Land and Resources,2010(s1):45-48(in Chinese with English Abstract).
[11] 张瑞江,方洪宾,赵福岳.青藏高原近30年来现代冰川的演化特征[J].国土资源遥感,2010(s1):49-53. Zhang R J,Fang H B,Zhao F Y.The Evolution of Existing Glaciers in the Past 30 Years in Qinghai-Tibet Plateau[J].Remote Sensing for Land and Resources,2010(s1):49-53(in Chinese with English Abstract).
[12] 张瑞江,赵福岳,方洪宾,等.青藏高原近30年现代雪线遥感调查[J].国土资源遥感,2010(s1):59-63. Zhang R J,Zhao F Y,Fang H B,et al.Remote Sensing Survey of Existing Snowlines in the Past 30 Years in Qinghai-Tibet Plateau[J].Remote Sensing for Land and Resources,2010(s1):59-63(in Chinese with English Abstract).
[13] 张佩民,张振德,李晓琴,等.青藏高原荒漠化遥感信息提取及演变分析[J].干旱区地理,2006,29(5):710-717. Zhang P M,Zhang Z D,Li X Q,et al.Desertification Remote Sensing Information Extraction From Qinhai-Tibet Plateau and Evolution Analysis[J].Arid Land Geography,2006,29(5):710-717(in Chinese with English Abstract).
[14] 邢宇,姜琦刚,李文庆,等.青藏高原湿地景观空间格局的变化[J].生态环境学报,2009,18(3):1010-1015. Xing Y,Jiang Q G,Li W Q,et al.Landscape Spatial Patterns Changes of the Wetland in Qinghai-Tibet Plateau[J].Ecology and Environmental Sciences,2009,18(3):1010-1015(in Chinese with English Abstract).
[15] 方洪宾,赵福岳,路云阁,等.青藏高原生态地质环境遥感调查研究[J].国土资源遥感,2007(4):61-65. Fang H B,Zhao F Y,Lu Y G.Remote Sensing Survey of Ecological and Geological and Environmental Factors in Qinhai-Tibetan Plateau[J].Remote Sensing for Land and Resources,2007(4):61-65(in Chinese with English Abstract).
[16] 刘明光.中国自然地理图集[M].北京:中国地图出版社,2010. Liu G M.Atlas of Physical and Geography of China[M].Beijing:SinoMaps Press,2010(in Chinese).
[1] WU Fang, LI Yu, JIN Dingjian, LI Tianqi, GUO Hua, ZHANG Qijie. Application of 3D information extraction technology of ground obstacles in the flight trajectory planning of UAV airborne geophysical exploration[J]. Remote Sensing for Natural Resources, 2022, 34(1): 286-292.
[2] LI Yang, YUAN Lin, ZHAO Zhiyuan, ZHANG Jinlei, WANG Xianye, ZHANG Liquan. Inversion of tidal flat topography based on unmanned aerial vehicle low-altitude remote sensing and field surveys[J]. Remote Sensing for Natural Resources, 2021, 33(3): 80-88.
[3] WU Yu, ZHANG Jun, LI Yixu, HUANG Kangyu. Research on building cluster identification based on improved U-Net[J]. Remote Sensing for Land & Resources, 2021, 33(2): 48-54.
[4] Xi LIU, Lina HAO, Xianhua YANG, Jie HUANG, Zhi ZHANG, Wunian YANG. Research and implementation of rapid statistical methods for mine remote sensing monitoring indicators[J]. Remote Sensing for Land & Resources, 2020, 32(2): 259-265.
[5] Lei MENG, Chao LIN. Discussion on quality inspection and solution of DEM generated by airborne LiDAR technology[J]. Remote Sensing for Land & Resources, 2020, 32(1): 7-12.
[6] Qi LI, Jianchao WANG, Yachao HAN, Zihong GAO, Yongjun ZHANG, Dingjian JIN. Potential evaluation of China’s coastal airborne LiDAR bathymetry based on CZMIL Nova[J]. Remote Sensing for Land & Resources, 2020, 32(1): 184-190.
[7] Tao CHENG, Guangyong LI, Kai BI. Research on the geospatial correction method of water extracting products considering the characteristics of time points[J]. Remote Sensing for Land & Resources, 2019, 31(2): 96-101.
[8] Lei DU, Jie CHEN, Minmin LI, Xiongwei ZHENG, Jing LI, Zihong GAO. The application of airborne LiDAR technology to landslide survey: A case study of Zhangjiawan Village landslides in Three Gorges Reservoir area[J]. Remote Sensing for Land & Resources, 2019, 31(1): 180-186.
[9] Nianqin WANG, Dejing QIAO, Xiyou FU. An analysis of the influence of filtering parameter on the performance of Goldstein InSAR interfergram filter[J]. Remote Sensing for Land & Resources, 2019, 31(1): 117-124.
[10] Bing TU, Xiaofei ZHANG, Guoyun ZHANG, Jinping WANG, Yao ZHOU. Hyperspectral image classification via recursive filtering and KNN[J]. Remote Sensing for Land & Resources, 2019, 31(1): 22-32.
[11] Li YAN, Yao LI, Hong XIE. Automatic reconstruction of LoD3 city building model based on airborne and vehicle-mounted LiDAR data[J]. Remote Sensing for Land & Resources, 2018, 30(4): 97-101.
[12] ZHENG Xiongwei, WEI Yingjuan, LI Chunying, LEI Bing, GAN Yuhang. The realization of intelligent optimization based on multi-source and massive domestic satellite image[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(s1): 13-20.
[13] SUN Na, GAO Zhiqiang, WANG Xiaojing, LUO Zhidong. High-precise extraction for water on the Loess Plateau region from high resolution satellite image[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(4): 173-178.
[14] SU Tengfei, ZHANG Shengwei, LI Hongyu. Segmentation algorithm based on texture feature and region growing for high-resolution remote sensing image[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(2): 72-81.
[15] LI Jiajun, ZHONG Ruofei. Route design of light airborne LiDAR[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(2): 97-103.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech