Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2011, Vol. 23 Issue (4) : 31-36     DOI: 10.6046/gtzyyg.2011.04.06
Technology and Methodology |
Characterization Evaluation and Potential Application Analysis of the Inner Mongolia Radiometric Calibration Site
MA Xiao-hong1,2,3, YU Tao2,3, GAO Hai-liang2,3, CHEN Xing-feng2,3, XIE Yu-juan1,2,3, HAN Jie1,2,3
1. School of Surveying & Land Information Engineering, Henan Polytechnic University, Jiaozuo 454000, China;
2. State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing Applications, CAS, Beijing 100101, China;
3. Demonstration Center of Spaceborn Remote Sensing, National Space Administration, Beijing 100101, China
Download: PDF(1285 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Using surface reflectance data and atmosphere aerosol data measured at the Inner Mongolia radiometric site in June, 2010, this paper analyzed the surface reflectance characteristics, atmosphere aerosol properties and geography conditions and made a comparison between the Inner Mongolia test site and the Dunhuang radiometric calibration site. The results show that the relative deviation of reflectance is less than 5%, indicating that the site has good uniformity, that the aerosol optical thickness of each channel is up to 0.1~0.2 during the fine weather, that the transportation is very convenient and that the cost of the calibration experiment is low. Therefore, the Inner Mongolia radiometric site not only can be used to carry out on-orbit radiometric calibration and validation experiments as the spare radiometric calibration site, but also can improve reliability and accuracy of homemade satellite remote sensing data.

Keywords Wetland      Spectral mixture analysis      Remote sensing      Vegetation coverage     
:  TP 722.4  
Issue Date: 16 December 2011
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WU Jian
PENG Dao-li
Cite this article:   
WU Jian,PENG Dao-li. Characterization Evaluation and Potential Application Analysis of the Inner Mongolia Radiometric Calibration Site[J]. REMOTE SENSING FOR LAND & RESOURCES, 2011, 23(4): 31-36.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2011.04.06     OR     https://www.gtzyyg.com/EN/Y2011/V23/I4/31



[1] Teillet P M,Thome K J,Fox N,et al.Earth Observation Sensor Calibration Using a Global Instrumented and Automated Network of Test Sites(GIANTS)[C]//Proceedings of SPIE Conference on Sensors,Systems,and Next-Generation Satellites V Toulouse,France,2001,4540:246-258.





[2] Thome K J,Crowther B G,Biggar S F.Reflectance and Irradiance- based Calibration of Landsat-5 Thematic Mapper [J].Canadian Journal of Remote Sensing,1997,23(4):309-317.





[3] Thome K J,Whittington E,LaMarr J,et al.Early Ground-Reference Calibration Results for Landsat-7 ETM+ Using Small Test Sites[C]//Proceedings of SPIE on Algorithms for Multispectral,Hyperspectral,and Ultraspectral Imagery VI Orlando FL,USA,2000,4049:134-142.





[4] Biggar S F,Magdeleine C,Dinguirard,et al.Radiometric Calibration of SPOT 2 HRV-A Comparison of Three Methods[C]//Proceedings of SPIE on Calibration of Passive Remote Observing Optical and Microwave Instrumentation,Orlando FL,USA,1991,1493:155-162.





[5] Thome K K,Whittington E,Smith N,et al.Ground-Reference Techniques for the Absolute Radiometric Calibration of MODIS[C]//Proceedings of SPIE on Earth Observing Systems V San Diego,CA,USA,2004,4135:51-59.





[6] 中国遥感卫星辐射校正场专题论证组.中国遥感卫星辐射较正场技术方案[Z].1994.





[7] 胡秀清,张玉香,邱康睦.采用辐照度基法对FY-1C气象卫星可见近红外通道进行绝对辐射定标[J].遥感学报,2003,7(6):458-464.





[8] 傅俏燕,闵祥军,李杏朝,等.敦煌场地CBERS-02 CCD传感器在轨绝对辐射定标研究[J].遥感学报,2006,10(4):433-439.





[9] Gao H L,Gu X F,Yu T,et al.HJ-1A HSI on Orbit Radiometric Calibration and Validation Research[J].Science China Technological Sciences,2010,53(11):3119-3128.





[10] 王志民.中国资源卫星绝对辐射校正场[J].国土资源遥感,1999(3):40-46.





[11] 傅俏燕.资源卫星在轨绝对辐射定标方法研究--以2004年CBERS-02星敦煌场地实验为例[D].北京:北京师范大学,2005.





[12] 胡秀清,张玉香,张广顺,等.中国遥感卫星辐射校正场气溶胶光学特性观测研究[J].应用气象学报,2001,12(3):257-266.





[13] 高海亮.HJ-1A超光谱成像仪在轨辐射定标及真实性检验研究[D].北京:中国科学院遥感应用研究所,2010.





[14] 郭建宁,于晋,曾湧,等.CBERS-01/02卫星CCD图像相对辐射校正研究[J].中国科学E辑:信息科学,2005,35(增刊I):11-25.

[1] LIU Wen, WANG Meng, SONG Ban, YU Tianbin, HUANG Xichao, JIANG Yu, SUN Yujiang. Surveys and chain structure study of potential hazards of ice avalanches based on optical remote sensing technology: A case study of southeast Tibet[J]. Remote Sensing for Natural Resources, 2022, 34(1): 265-276.
[2] WANG Qian, REN Guangli. Application of hyperspectral remote sensing data-based anomaly extraction in copper-gold prospecting in the Solake area in the Altyn metallogenic belt, Xinjiang[J]. Remote Sensing for Natural Resources, 2022, 34(1): 277-285.
[3] LYU Pin, XIONG Liyuan, XU Zhengqiang, ZHOU Xuecheng. FME-based method for attribute consistency checking of vector data of mines obtained from remote sensing monitoring[J]. Remote Sensing for Natural Resources, 2022, 34(1): 293-298.
[4] ZHANG Daming, ZHANG Xueyong, LI Lu, LIU Huayong. Remote sensing image segmentation based on Parzen window density estimation of super-pixels[J]. Remote Sensing for Natural Resources, 2022, 34(1): 53-60.
[5] XUE Bai, WANG Yizhe, LIU Shuhan, YUE Mingyu, WANG Yiying, ZHAO Shihu. Change detection of high-resolution remote sensing images based on Siamese network[J]. Remote Sensing for Natural Resources, 2022, 34(1): 61-66.
[6] SONG Renbo, ZHU Yuxin, GUO Renjie, ZHAO Pengfei, ZHAO Kexin, ZHU Jie, CHEN Ying. A method for 3D modeling of urban buildings based on multi-source data integration[J]. Remote Sensing for Natural Resources, 2022, 34(1): 93-105.
[7] LI Weiguang, HOU Meiting. A review of reconstruction methods for remote-sensing-based time series data of vegetation and some examples[J]. Remote Sensing for Natural Resources, 2022, 34(1): 1-9.
[8] DING Bo, LI Wei, HU Ke. Inversion of total suspended matter concentration in Maowei Sea and its estuary, Southwest China using contemporaneous optical data and GF SAR data[J]. Remote Sensing for Natural Resources, 2022, 34(1): 10-17.
[9] GAO Qi, WANG Yuzhen, FENG Chunhui, MA Ziqiang, LIU Weiyang, PENG Jie, JI Yanzhen. Remote sensing inversion of desert soil moisture based on improved spectral indices[J]. Remote Sensing for Natural Resources, 2022, 34(1): 142-150.
[10] ZHANG Qinrui, ZHAO Liangjun, LIN Guojun, WAN Honglin. Ecological environment assessment of three-river confluence in Yibin City using improved remote sensing ecological index[J]. Remote Sensing for Natural Resources, 2022, 34(1): 230-237.
[11] HE Peng, TONG Liqiang, GUO Zhaocheng, TU Jienan, WANG Genhou. A study on hidden risks of glacial lake outburst floods based on relief amplitude: A case study of eastern Shishapangma[J]. Remote Sensing for Natural Resources, 2022, 34(1): 257-264.
[12] YU Xinli, SONG Yan, YANG Miao, HUANG Lei, ZHANG Yanjie. Multi-model and multi-scale scene recognition of shipbuilding enterprises based on convolutional neural network with spatial constraints[J]. Remote Sensing for Natural Resources, 2021, 33(4): 72-81.
[13] LI Yikun, YANG Yang, YANG Shuwen, WANG Zihao. A change vector analysis in posterior probability space combined with fuzzy C-means clustering and a Bayesian network[J]. Remote Sensing for Natural Resources, 2021, 33(4): 82-88.
[14] AI Lu, SUN Shuyi, LI Shuguang, MA Hongzhang. Research progress on the cooperative inversion of soil moisture using optical and SAR remote sensing[J]. Remote Sensing for Natural Resources, 2021, 33(4): 10-18.
[15] HE Chenlinqiu, CHENG Bo, CHEN Jinfen, ZHANG Xiaoping. Information extraction methods of coastal wetland based on GF-3 fully polarimetric SAR data[J]. Remote Sensing for Natural Resources, 2021, 33(4): 105-110.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech