Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2014, Vol. 26 Issue (1) : 78-82     DOI: 10.6046/gtzyyg.2014.01.14
Technology and Methodology |
Retrieving soil moisture in arid area based on MODIS data
HU Meng1, FENG Qi1,2, XI Haiyang1,2
1. Cold and Arid Region Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China;
2. Alashan Desert Eco-Hydrology Experimental Research Station, Alashanmeng 735400, China
Download: PDF(909 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

In order to study the spatial and temporal distribution and the change of soil moisture in the lower reaches of the Heihe River Basin, the authors used the MODIS data products and the soil moisture data measured from the field data and adopted the thermal inertia to calculate the apparent thermal inertia (ATI). Then ATI and soil moisture were used to build the experience model by regression analysis. At last the soil moisture in the lower reaches of Heihe River Basin was successfully retrieved by this model. The results indicate that using MODIS products provided by NASA could predigest the retrieval parameters, reduce the complexity of soil moisture retrieval and ensure the application in the large or middle-sized region. The ATI mean of sand is larger than that of loam and clay, the ATI of clay and loam is relatively large and scattered. The ATI mean of the oasis area is larger than that of the gobi and desert area. The proposed thermal inertia model can reliably monitor the soil moisture within the soil depth of 20 cm.

Keywords multi-temporal      cropland information extraction      TM image      change vector analysis     
:  TP75  
Issue Date: 08 January 2014
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
XU Chao
ZHAN Jinrui
PAN Yaozhong
ZHU Wenquan
Cite this article:   
XU Chao,ZHAN Jinrui,PAN Yaozhong, et al. Retrieving soil moisture in arid area based on MODIS data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(1): 78-82.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2014.01.14     OR     https://www.gtzyyg.com/EN/Y2014/V26/I1/78

[1] 常学向, 赵爱芬, 赵文智, 等.黑河中游荒漠绿洲区免灌植被土壤水分状况[J].水土保持学报, 2003, 17(2):126-129. Chang X X, Zhao A F, Zhao W Z, et al.Status of soil moisture in oasis and desert unirrigated vegetation region along middle reaches of Heihe River basin[J].Journal of Soil and Water Conservation, 2003, 17(2):126-129.

[2] 冯志敏, 邢文渊, 肖继东, 等.遥感监测土壤湿度综述及其在新疆的应用展望[J].测绘科学, 2008, 33(5):94-97. Feng Z M, Xing W Y, Xiao J D, et al.The summarization of soil moisture remote sensing inspecting and the application prospect in Xinjiang[J].Science of Surveying and Mapping, 2008, 33(5):94-97.

[3] 乔平林, 张继贤, 林宗坚.石羊河流域水质环境遥感监测评价研究[J].国土资源遥感, 2003, 15(4):39-45. Qiao P L, Zhang J X, Lin Z J.The application of remote sensing technique to monitoring and evaluating water pollution in the Shiyang River valley[J].Remote Sensing for Land and Resources, 2003, 15(4):39-45.

[4] 余涛, 田国良.热惯量法在监测土壤表层水分变化中的研究[J].遥感学报, 1997, 1(1):24-32. Yu T, Tian G L.The application of thermal inertia method the monitoring of soil moisture of north China plain based on NOAA-AVHRR data[J].Journal of Remote Sensing, 1997, 1(1):24-32.

[5] 张小由, 康尔泗, 司建华, 等.黑河下游胡杨林耗水规律研究[J].干旱区资源与环境, 2006, 20(1):195-197. Zhang X Y, Kang E S, Si J H, et al.Study on water consumption law of Populus euphratica[J].Journal of Arid Land Resources and Environment, 2006, 20(1):195-197.

[6] 肖生春, 肖洪浪.近百年来人类活动对黑河流域水环境的影响[J].干旱区资源与环境, 2004, 18(3):57-62. Xiao S C, Xiao H L.The impact of human activity on the water environment of Heihe water basin in last century[J].Journal of Arid Land Resources and Environment, 2004, 18(3):57-62.

[7] 司建华, 冯起, 张小由, 等.黑河下游分水后的植被变化初步研究[J].西北植物学报, 2005, 25(4):631-640. Si J H, Feng Q, Zhang X Y, et al.Vegetation changes in the lower reaches of the Heihe River after its water import[J].Acta Botanica Boreali-Occidentalia Sinica, 2005, 25(4):631-640.

[8] Li X, Nan Z T, Cheng G D, et al.Toward an improved data stewardship and service for environmental and ecological science data in west China[J].International Journal of Digital Earth, 2011, 4(4):347-359.DOI:10.1080/17538947.2011.558123.

[9] 任国玉, 姜彤, 李维京, 等.气候变化对中国水资源情势影响综合分析[J].水科学进展, 2008, 19(6):772-779. Ren G Y, Jiang T, Li W J, et al.An integrated assessment of climate change impacts on China's water resources[J].Advances in Water Science, 2008, 19(6):772-779.

[10] Cosh M H, Jackson T J, Moran S, et al.Temporal persistence and stability of surface soil moisture in a semi-arid watershed[J].Remote Sensing of Environment, 2008, 112(2):304-313.

[11] Liang S.Narrowband to broadband conversions of land surface Albedo I:Algorithms[J].Remote Sensing of Environment, 2000, 76:213-238.

[12] 肖乾广, 陈维英, 盛永伟, 等.用气象卫星监测土壤水分的试验研究[J].应用气象学报, 1994, 5(3):312-318. Xiao Q G, Chen W Y, Sheng Y W, et al.A study on soil moisture monitoring using NOAA satellite[J].Quarterly Journal of Applied Meteorology, 1994, 5(3):312-318.

[13] 陈怀亮, 冯定原, 邹春辉.麦田土壤水分NOAA/AVHRR遥感监测方法研究[J].遥感技术与应用, 1998, 13(4):27-35. Chen H L, Feng D Y, Zou C H.The study of method on monitoring soil moisture in wheat field by NOAA/AVHRR data[J].Remote Sensing Technology and Application, 1998, 13(4):27-35.

[14] 郭妮, 陈添宇, 雷建勤, 等.用NOAA卫星可见光和红外资料估算甘肃省东部农田区土壤湿度[J].应用气象学报, 1997, 8(2):212-218. Guo N, Chen T Y, Lei J L, et al.Estimating farmland soil moisture in eastern Gansu Province using NOAA Satellite data[J].Quarterly Journal of Applied Meteorology, 1997, 8(2):212-218.

[1] LI Yikun, YANG Yang, YANG Shuwen, WANG Zihao. A change vector analysis in posterior probability space combined with fuzzy C-means clustering and a Bayesian network[J]. Remote Sensing for Natural Resources, 2021, 33(4): 82-88.
[2] WANG Yiuzhu, HUANG Liang, CHEN Pengdi, LI Wenguo, YU Xiaona. Change detection of remote sensing images based on the fusion of co-saliency difference images[J]. Remote Sensing for Natural Resources, 2021, 33(3): 89-96.
[3] TIAN Lei, FU Wenxue, SUN Yanwu, JING Linhai, QIU Yubao, LI Xinwu. Research on spatial change of the boreal forest cover in Siberia over the past 30 years based on TM images[J]. Remote Sensing for Land & Resources, 2021, 33(1): 214-220.
[4] Juan XUE, Linfeng YU, Qinan LIN, Guang LIU, Huaguo HUANG. Using Sentinel-1 multi-temporal InSAR data to monitor the damage degree of shoot beetle in Yunnan pine forest[J]. Remote Sensing for Land & Resources, 2018, 30(4): 108-114.
[5] Xianyu GUO, Kun LI, Zhiyong WANG, Hongyu LI, Zhi YANG. Fine classification of rice with multi-temporal compact polarimetric SAR based on SVM+SFS strategy[J]. Remote Sensing for Land & Resources, 2018, 30(4): 20-27.
[6] Xinran ZHU, Bo WU, Qiang ZHANG. An improved CVAPS method for automatic updating of LUCC classification[J]. Remote Sensing for Land & Resources, 2018, 30(2): 29-37.
[7] ZHANG Zhaoying, LU Yicen, WU Guozhou, WANG Yongli. Retrieval of precipitation for grassland based on the multi-temporal Sentinel-1 SAR data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(4): 156-160.
[8] LI Chungan, Liang Wenhai. Forest change detection using remote sensing image based on object-oriented change vector analysis[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(3): 77-84.
[9] ZHOU Xiaoyu, CHEN Fulong, JIANG Aihui. SVM-based forest mapping of Wolong Giant Panda Habitat using SAR data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(3): 85-91.
[10] SHAO Yanpo, HONG Youtang. PIF method for relative radiometric correction of remote sensing images[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(1): 7-13.
[11] GUO Hongyan, ZOU Liqun, ZHANG Youyan, LIU Yang, DONG Wentong, ZHOU Hongying. Data management of multi-temporal images for remote sensing information services in oil and gas application[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(2): 188-192.
[12] HUANG Wei, HUANG Jinliang, WANG Lihui, HU Yanxia, HAN Pengpeng. Remote sensing image change detection based on change vector analysis of PCA component[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(1): 22-27.
[13] GUO Qiaozhen, NING Xiaoping, WANG Zhiheng, JIANG Weiguo. Impact analysis of landform for land use dynamic change of the partly mountainous area: A case study of Jixian County in Tianjin City[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(1): 153-159.
[14] XU Xu, REN Feipeng, HAN Nianlong. Remote sensing monitoring of spatio-temporal changes of ecosystem service values in Hebei Province, 2000—2009[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(1): 187-193.
[15] LIU Juan, CAI Yanjun, WANG Jin. Soil classification of Qinghai Lake basin based on remote sensing[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(1): 57-62.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech