Please wait a minute...
 
Remote Sensing for Natural Resources    2021, Vol. 33 Issue (3) : 89-96     DOI: 10.6046/zrzyyg.2020312
|
Change detection of remote sensing images based on the fusion of co-saliency difference images
WANG Yiuzhu1(), HUANG Liang1,2(), CHEN Pengdi1, LI Wenguo1, YU Xiaona3
1. Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, China
2. Surveying and Mapping Geo-Informatics Technology Research Center on Plateau Mountains of Yunnan Higher Education, Kunming 650093, China
3. Kunming Vocational and Technical College of Industry, Kunming 650302, China
Download: PDF(4207 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Owing to the complex surface features in the high spatial resolution (HR) remote sensing images, traditional change detection methods suffer the shortcoming of a high omission rate. Given this, this paper proposed a change detection method based on multi-temporal remote sensing images based on the fusion of co-saliency difference images. In this study, three groups of dual-temporal HR remote sensing images were selected to carry out the experiment according to the following steps. First, develop difference images based on the dual-temporal HR remote sensing images using the methods of change vector analysis (CVA) and spectral gradient difference (SGD). Then obtain a co-saliency map of two difference images using the cluster-based co-saliency detection. Finally, obtain the co-saliency difference map by fusing two co-saliency maps, and then conduct threshold segmentation and closing operation of the co-saliency difference map using the OTSU method. In this way, the final change map was obtained. As indicated by the experiment results, this method is superior to traditional methods in terms of overall accuracy (OA), Kappa coefficient, and F-measure accuracy and thus is highly reliable and accurate.

Keywords change vector analysis      spectral gradient difference      co-saliency detection      change detection      remote sensing image     
ZTFLH:  TP79  
Corresponding Authors: HUANG Liang     E-mail: mmc55730924@163.com;kmhuangliang@163.com
Issue Date: 24 September 2021
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yiuzhu WANG
Liang HUANG
Pengdi CHEN
Wenguo LI
Xiaona YU
Cite this article:   
Yiuzhu WANG,Liang HUANG,Pengdi CHEN, et al. Change detection of remote sensing images based on the fusion of co-saliency difference images[J]. Remote Sensing for Natural Resources, 2021, 33(3): 89-96.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2020312     OR     https://www.gtzyyg.com/EN/Y2021/V33/I3/89
Fig.1  Flow chart of the method
Fig.2  The first group of image change detection results
方法 FA MA OA Kappa F-measure
CVA-OTSU 26.80 24.16 73.43 8.83 25.10
SGD-OTSU 9.16 23.50 89.62 28.43 48.70
CWNN 13.22 87.73 80.40 0.19 8.70
FLICM 8.65 94.56 84.00 0.59 5.50
PCA-Kmeans 16.05 34.37 82.38 23.19 31.90
本文方法 4.09 26.18 94.02 64.59 65.00
Tab.1  Accuracy evaluation of the first group image(%)
Fig.3  The second group of image change detection results
方法 FA MA OA Kappa F-measure
CVA-OTSU 12.04 13.60 87.94 5.78 14.40
SGD-OTSU 19.10 57.15 80.22 1.96 5.00
CWNN 4.92 38.49 94.48 26.42 22.10
FLICM 5.34 19.16 94.41 32.12 25.90
PCA-Kmeans 9.36 5.56 90.71 13.38 19.20
本文方法 0.59 22.59 99.01 73.19 71.80
Tab.2  Accuracy evaluation of the second group image(%)
Fig.4  The third group of image change detection results
方法 FA MA OA Kappa F-measure
CVA-OTSU 16.64 6.90 83.62 6.07 16.50
SGD-OTSU 24.73 66.11 74.17 1.05 4.50
CWNN 17.96 17.73 82.05 15.59 13.80
FLICM 5.75 36.57 93.44 31.18 27.10
PCA-Kmeans 14.57 3.15 85.73 11.60 19.00
本文方法 1.35 33.64 97.80 60.36 59.10
Tab.3  Accuracy evaluation of the third group image(%)
[1] 黄亮, 左小清, 於雪琴. 遥感影像变化检测方法探讨[J]. 测绘科学, 2013, 38(4):203-206.
[1] Huang L, Zuo X Q, Yu X Q. Review on change detection methods of remote sensing images[J]. Science of Surveyingand Mapping, 2013, 38(4):203-206.
[2] Radke R J, Andra S, Al K O, et al. Image change detection algorithms:A systematic survey[J]. IEEE Transactions on Image Processing, 2005, 14(3):294-307.
doi: 10.1109/TIP.2004.838698 url: http://ieeexplore.ieee.org/document/1395984/
[3] 眭海刚, 冯文卿, 李文卓, 等. 多时相遥感影像变化检测方法综述[J]. 武汉大学学报(信息科学版), 2018, 43(12):1885-1898.
[3] Sui H G, Feng W Q, Li W Z, et al. Review of change detection methods for multi-temporal remote sensing imagery[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12):1885-1898.
[4] 张良培, 武辰. 多时相遥感影像变化检测的现状与展望[J]. 测绘学报, 2017, 46(10):1447-1459.
[4] Zhang L P, Wu C. Advance and future development of change detection for multi-temporal remote sensing imagery[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10):1447-1459.
[5] 黄亮, 於雪琴, 姚丙秀, 等. 线性迭代聚类和主成分分析的遥感影像变化检测[J]. 测绘科学, 2019, 44(11):189-194.
[5] Huang L, Yu X Q, Yao B X, et al. Change detection for remote sensing images based on SLIC and PCA[J]. Science of Surveying and Mapping, 2019, 44(11):189-194.
[6] Huang L, Fang Y M, Zuo X Q, et al. Automatic change detection method of multitemporal remote sensing images based on 2D-OTSU algorithm improved by firefly algorithm[J]. Journal of Sensors, 2015(3):327123.
[7] Wu Z, Hu Z, Fan Q. Superpixel-based unsupervised change detection using multi-dimensional change vector analysis and SVM-based classification[J]. ISPRS Annals of the Photogrammetry, 2012, I-7(1):257-262.
[8] 赵敏, 赵银娣. 面向对象的多特征分级CVA遥感影像变化检测[J]. 遥感学报, 2018, 22(1):119-131.
[8] Zhao M, Zhao Y D. Object-oriented and multi-feature hierarchical change detection based on CVA for high-resolution remote sensing imagery[J]. Journal of Remote Sensing, 2018, 22(1):119-131.
[9] 冯文卿, 张永军. 利用多尺度融合进行面向对象的遥感影像变化检测[J]. 测绘学报, 2015, 44(10):1142-1151.
[9] Feng W Q, Zhang Y J. Object-oriented change detection for remote sensing images based on multiscale fusion[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(10):1142-1151.
[10] Chen J, Lu M, Chen X, et al. A spectral gradient difference based approach for land cover change detection[J]. ISPRS Journal of Photogrammetry & Remote Sensing, 2013(85):1-12.
[11] 肖明虹, 冯文卿, 眭海刚. 超像素分割和多方法融合的遥感影像变化检测方法[J]. 测绘通报, 2018(10):93-97,121.
[11] Xiao M H, Feng W Q, Sui H G. Remote sensing image change detection algorithm based on super-pixel segmentation and multiple difference maps[J]. Bulletin of Surveying and Mapping, 2018(10):93-97,121.
[12] He S F, Rynson W H L, Liu W X, et al. SuperCNN:A superpixelwise convolutional neural network for salient object detection[J]. International Journal of Computer Vision, 2015, 115(3):330-344.
doi: 10.1007/s11263-015-0822-0 url: http://link.springer.com/10.1007/s11263-015-0822-0
[13] Fu H Z, Cao X C, Tu Z W. Cluster-based co-saliency detection[J]. IEEE Transactions on Image Processing, 2013, 22(10):3766-3778.
doi: 10.1109/TIP.83 url: https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=83
[14] Huang L, Peng Q Z, Yu X Q. Change detection in multitemporal high spatial resolution remote-sensing images based on saliency detection and spatial intuitionistic fuzzy C-means clustering[J]. Journal of Spectroscopy, 2020:1-9.
[15] Zhao J, Liu J J, Fan D P, et al. EGNet:Edge guidance network for salient object detection[C]// CVF International Conference on Computer Vision (ICCV).IEEE, 2020:8778-8787.
[16] 刘媛媛, 孙嘉慧, 王跃勇, 等. Otsu和形态学相结合的人参叶斑图像分割系统[J/OL]. 长春:吉林农业大学学报(2020-07-23)[2020-09-24]. https://doi.org/10.13327/j.jjlau.2020.5794.
url: https://doi.org/10.13327/j.jjlau.2020.5794
[16] Liu Y Y, Sun J H, Wang Y Y, et al. Ginseng leaf spot image segmentation system based on Otsu and morphology algorithm[J/OL]. Changchun:Journal of Jilin Agricultural University(2020-07-23)[2020-09-24]. https://doi.org/10.13327/j.jjlau.2020.5794.
url: https://doi.org/10.13327/j.jjlau.2020.5794
[17] Liu D, Yu J. Otsu method and K-means[C]// Ninth International Conference on Hybrid Intelligent Systems.IEEE Computer Society, 2009:344-349.
[18] Bovolo F, Bruzzone L. A detail-preserving scale-driven approach to change detection in multitemporal SAR images[J]. IEEE Transactions on Geoscience & Remote Sensing, 2005, 43(12):2963-2972.
[19] Gong M, Zhang P, Su L, et al. Coupled dictionary learning for change detection from multisource data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(12):7077-7091.
doi: 10.1109/TGRS.2016.2594952 url: http://ieeexplore.ieee.org/document/7542553/
[20] Wu C, Du B, Cui X, et al. A post-classification change detection method based on iterative slow feature analysis and Bayesian soft fusion[J]. Remote Sensing of Environment, 2017, 199:241-255.
doi: 10.1016/j.rse.2017.07.009 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425717303140
[21] Duan Y P, Liu F, Jiao L C, et al. SAR Image segmentation based on convolutional-wavelet neural network and markov random field[J]. Pattern Recognition, 2017, 64:255-267.
doi: 10.1016/j.patcog.2016.11.015 url: https://linkinghub.elsevier.com/retrieve/pii/S0031320316303727
[22] 刘瑞, 贾振红, 覃锡忠, 等. 基于模糊局部信息C均值的SAR图像变化检测[J]. 激光杂志, 2015, 36(11):28-31.
[22] Liu R, Jia Z H, Qin X Z, et al. A new SAR image change detection based on FLICM algorithm[J]. Laser Journal, 2015, 36(11):28-31.
[23] Celik T. Unsupervised change detection in satellite images using principal component analysis and K-means clustering[J]. IEEE Geoscience & Remote Sensing Letters, 2009, 6(4):772-776.
[1] NIU Xianghua, HUANG Wei, HUANG Rui, JIANG Sili. A high-fidelity method for thin cloud removal from remote sensing images based on attentional feature fusion[J]. Remote Sensing for Natural Resources, 2023, 35(3): 116-123.
[2] DONG Ting, FU Weiqi, SHAO Pan, GAO Lipeng, WU Changdong. Detection of changes in SAR images based on an improved fully-connected conditional random field[J]. Remote Sensing for Natural Resources, 2023, 35(3): 134-144.
[3] WANG Jianqiang, ZOU Zhaohui, LIU Rongbo, LIU Zhisong. A method for extracting information on coastal aquacultural ponds from remote sensing images based on a U2-Net deep learning model[J]. Remote Sensing for Natural Resources, 2023, 35(3): 17-24.
[4] TANG Hui, ZOU Juan, YIN Xianghong, YU Shuchen, HE Qiuhua, ZHAO Dong, ZOU Cong, LUO Jianqiang. River and lake sand mining in the Dongting Lake area: Supervision based on high-resolution remote sensing images and typical case analysis[J]. Remote Sensing for Natural Resources, 2023, 35(3): 302-309.
[5] XU Xinyu, LI Xiaojun, ZHAO Heting, GAI Junfei. Pansharpening algorithm of remote sensing images based on NSCT and PCNN[J]. Remote Sensing for Natural Resources, 2023, 35(3): 64-70.
[6] ZHANG Xian, LI Wei, CHEN Li, YANG Zhaoying, DOU Baocheng, LI Yu, CHEN Haomin. Research progress and prospect of remote sensing-based feature extraction of opencast mining areas[J]. Remote Sensing for Natural Resources, 2023, 35(2): 25-33.
[7] DIAO Mingguang, LIU Yong, GUO Ningbo, LI Wenji, JIANG Jikang, WANG Yunxiao. Mask R-CNN-based intelligent identification of sparse woods from remote sensing images[J]. Remote Sensing for Natural Resources, 2023, 35(2): 97-104.
[8] XIONG Dongyang, ZHANG Lin, LI Guoqing. MaxEnt-based multi-class classification of land use in remote sensing image interpretation[J]. Remote Sensing for Natural Resources, 2023, 35(2): 140-148.
[9] HU Jianwen, WANG Zeping, HU Pei. A review of pansharpening methods based on deep learning[J]. Remote Sensing for Natural Resources, 2023, 35(1): 1-14.
[10] ZHAO Linghu, YUAN Xiping, GAN Shu, HU Lin, QIU Mingyu. An information extraction model of roads from high-resolution remote sensing images based on improved Deeplabv3+[J]. Remote Sensing for Natural Resources, 2023, 35(1): 107-114.
[11] QIN Le, HE Peng, MA Yuzhong, LIU Jianqiang, YANG Bin. Change detection of satellite time series images based on spatial-temporal-spectral features[J]. Remote Sensing for Natural Resources, 2022, 34(4): 105-112.
[12] MENG Congtang, ZHAO Yindi, HAN Wenquan, HE Chenyang, CHEN Xiqiu. RandLA-Net-based detection of urban building change using airborne LiDAR point clouds[J]. Remote Sensing for Natural Resources, 2022, 34(4): 113-121.
[13] SHEN Jun’ao, MA Mengting, SONG Zhiyuan, LIU Tingzhou, ZHANG Wei. Water information extraction from high-resolution remote sensing images using the deep-learning based semantic segmentation model[J]. Remote Sensing for Natural Resources, 2022, 34(4): 129-135.
[14] LYU Yanan, ZHU Hong, MENG Jian, CUI Chengling, SONG Qiqi. A review and adaptability study of deep learning models for vehicle detection based on high-resolution remote sensing images[J]. Remote Sensing for Natural Resources, 2022, 34(4): 22-32.
[15] MA Xiaojian, ZHAO Fashun, LIU Yanbin. Multi-feature fusion-based recognition and processing of impulse noise in remote sensing images[J]. Remote Sensing for Natural Resources, 2022, 34(3): 17-26.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech