Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2015, Vol. 27 Issue (4) : 79-84     DOI: 10.6046/gtzyyg.2015.04.13
Technology and Methodology |
Applicability of the water information extraction method based on GF-1 image
DUAN Qiuya1, MENG Lingkui1, FAN Zhiwei1, HU Weiguo1, XIE Wenjun2
1. School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, China;
2. Water Information Center, the Ministry of Water Resources, Beijing 100053, China
Download: PDF(3139 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

In this paper, the authors conducted an applicability study of water-based information extraction method according to the data features of GF-1 image. Firstly, water index(normalized difference water index, NDWI)threshold method, support vector machine (SVM)method and object-oriented method were used respectively to conduct water information extraction experiments on the Poyang Lake area based on GF-1 image so as to analyze and compare the advantages and disadvantages of these methods. Secondly, statistic analysis of the rate of leakage and error as well as extraction accuracy was made by selecting two representative areas with different scales and complexities, with the manual interpretation of these two water areas as reference. The results show that the above three kinds of methods all have a high accuracy in both areas, with the extraction accuracy of the simple area (area 1) slightly higher than that of the complex area (area 2); A comparative study of these three methods shows that SVM method has the highest accuracy (99.474 2%, 98.099 3%), followed by the object-oriented method (99.316 4%, 97.877 9%), and then by NDWI threshold method(99.145 6%, 97.590 0%).

Keywords ZY-1 02C satellite      Tajikistan      interpretation marks      remote sensing geological interpretation     
:  TP79  
Issue Date: 23 July 2015
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Kun
LI Zongren
MA Shibin
Cite this article:   
ZHANG Kun,LI Zongren,MA Shibin. Applicability of the water information extraction method based on GF-1 image[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(4): 79-84.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2015.04.13     OR     https://www.gtzyyg.com/EN/Y2015/V27/I4/79

[1] 韩晶, 邓喀中, 范洪冬.利用波段合成研究SPOT多光谱影像水体提取方法[J].全球定位系统, 2012, 37(5):76-80. Han J, Deng K Z, Fan H D.Using band synthesis to research SPOT multispectral image water extraction methods[J].GNSS World of China, 2012, 37(5):76-80.

[2] 王志辉, 易善桢.不同指数模型法在水体遥感提取中的比较研究[J].科学技术与工程, 2007, 7(4):534-537. Wang Z H, Yi S Z.Comparison and research on the different index models used in water extraction by remote sensing[J].Science Technology and Engineering, 2007, 7(4):534-537.

[3] 胡卫国, 孟令奎, 张东映, 等.资源一号02C星图像水体信息提取方法[J].国土资源遥感, 2014, 26(2):43-47.doi:10.6046/gtzyyg.2014.02.08. Hu W G, Meng L K, Zhang D Y, et al.Methods of water extraction from ZY-1 02C satellite imagery [J].Remote Sensing for Land and Resources, 2014, 26(2):43-47.doi:10.6046/gtzyyg.2014.02.08.

[4] 徐涵秋.利用改进的归一化差异水体指数(MNDWI)提取水体信息的研究[J].遥感学报, 2005, 9(5):589-595. Xu H Q.A stud on information extraction of water body with the modified normalized difference water index(MNDWI)[J].Journal of Remote Sensing, 2005, 9(5):589-595.

[5] 赵书河, 陈秀万, 陈军锋, 等.基于支持向量机的CBERS-1水体信息提取研究[C]//袁业立.第十四届全国遥感技术学术交流会论文摘要集.北京:中国地质学会, 2003. Zhao S H, Chen X W, Chen J F, et al.Extraction water information of CBERS-1 based on support vector machine[C]//Yuan Y L.Abstract Books in Academic Exchange Meeting of Fourteenth National Remote Sensing Technology.Beijing:Geological Society of China, 2003.

[6] 沈金祥, 杨辽, 陈曦, 等.面向对象的山区湖泊信息自动提取方法[J].国土资源遥感, 2012, 24(3):84-91.doi:10.6046/gtzyyg.2012.03.16. Shen J X, Yang L, Chen X, et al.A method for object-oriented automatic extraction of lakes in the mountain area from remote sensing image[J].Remote Sensing for Land and Resources, 2012, 24(3):84-91.doi:10.6046/gtzyyg.2012.03.16.

[7] 中国资源卫星应用中心.高分一号[EB/OL].[2014-01-06]. http://www.cresda.com/n16/n1130/n188475/188494.html. China Centre for Resources Satelite Data and Application.GF-1 Satelite[EB/OL].[2014-01-06].http://www.cresda.com/n16/n1130/n188475/188494.html.

[8] 百度百科.鄱阳湖[EB/OL][2014-05-22].http://baike.baidu.com/subview/4173/4173.htm?fr=aladdin. Baidu Baike.Poyang Lake[EB/OL][2014-05-22].http://baike.baidu.com/subview/4173/4173.htm?fr=aladdin.

[9] McFeeters S K.The use of the normalized difference water index(NDWI) in the delineation of open water features[J].International Journal of Remote Sensing, 1996, 17(7):1425-1432.

[10] 朱长明, 张新, 骆剑承, 等.基于样本自动选择与SVM结合的海岸线遥感自动提取[J].国土资源遥感, 2013, 25(2):69-74.doi:10.6046/gtzyyg.2013.02.13. Zhu C M, Zhang X, Luo J C, et al.Automatic extraction of coastline by remote sensing technology based on SVM and auto-selection for training samples[J].Remote Sensing for Land and Resources, 2013, 25(2):69-74.doi:10.6046/gtzyyg.2013.02.13.

[11] Vapnik V N.An overview of statistical learning theory[J].IEEE Transactions on Neural Networks, 1999, 10(5):988-999.

[12] 张锦水, 何春阳, 潘耀忠, 等. 基于SVM的多源信息复合的高空间分辨率遥感数据分类研究[J].遥感学报, 2006, 10(1):49-57. Zhang J S, He C Y, Pan Y Z, et al.The high spatial resolution RS image classification based on SVM method with the multi-source data[J].Journal of Remote Sensing, 2006, 10(1):49-57.

[13] Li M M, Zhu X C, Wang X Q, et al.Genetic algorithm optimized SVM in object-based classification of quickbird imagery[C]//Proceedings of 2011 IEEE International Conference on Spatial Data Mining and Geographical Knowledge Services(ICSDM 2011).Fuzhou:IEEE, 2011:384-352.

[14] 黄奇瑞.基于粗糙集理论和SVM分类算法的遥感影像分类[D].昆明:昆明理工大学, 2012. Huang Q R.RS Image Classification Based on Rough Sets Theory and Classification Algorithm[D].Kunming:Kunming University of Science and Technology, 2012.

[15] Roli F, Fumera G.Support vector machines for remote-sensing image classification[C]//Europto Remote Sensing.International Society for Optics and Photonics, 2001:160-166.

[16] 朱树先, 张仁杰.支持向量机核函数选择的研究[J].科学技术与工程, 2008, 8(16):4513-4517. Zhu S X, Zhang R J.Research for selection of kernel functions used in support vector machine[J].Science Technology and Engineering, 2008, 8(16):4513-4517.

[17] 刘兆祎, 李鑫慧, 沈润平, 等.高分辨率遥感图像分割的最优尺度选择[J].计算机工程与应用, 2014, 50(6):144-147. Liu Z Y, Li X H, Shen R P, et al.Selection of the best segmentation scale in high-resolution image segmentation[J].Computer Engineering and Applications, 2014, 50(6):144-147.

[18] 闫利, 赵展, 聂倩, 等.利用规则进行高分辨率遥感影像地物提取[J].武汉大学学报:信息科学版, 2012, 37(6):636-639. Yan L, Zhao Z, Nie Q, et al.Ground objects extraction from high-resolution remote sensing image with rules[J].Geomatics and Information Science of Wuhan University, 2012, 37(6):636-639.

[19] 王展青, 王传廷, 张富铭, 等.基于有效候选集的支持向量机样本选择方法[J].计算机工程与应用, 2008, 44(23):214-217. Wan Z Q, Wang C Q, Zhang F M, et al.Sample selection for support vector machines based on effective candidate set[J].Computer Engineering and Applications, 2008, 44(23):636-639.

[1] Guanbing HU, Fang LIU, Wei DANG, Kun YANG, Qingsong CHEN. Application of remote sensing technology to geological mapping in the vegetation covered area of southwest Yunnan[J]. Remote Sensing for Land & Resources, 2019, 31(2): 224-230.
[2] DONG Shuangfa, JIANG Xue, LI Mingsong, WANG Ruijun, SUN Yongbin. Domestic satellite data of remote sensing geological interpretation system based on the total factor: A case study of the arid and semi-arid mountains[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(s1): 21-26.
[3] LI Xiaomin, YAN Yunpeng, LIU Gang, LI Dongling, ZHANG Xing, ZHUANG Yongcheng. Application of ZY-1 02C satellite data to hydrogeological investigation in Zanda area, Tibet[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(4): 141-148.
[4] ZHANG Wei, JIN Moushun, ZHANG Shaopeng, CHEN Ling, ZHONG Chang, DONG Lina. Application of high resolution remote sensing data to ore-prospecting prediction in East Kunlun metallogenic belt[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(2): 112-119.
[5] FU Changliang, YANG Qinghua, JIANG Qigang, WANG Mengfei, JIANG Xiao. Application of remote sensing technique to geological survey abroad: A case study of Great Dyke,Zimbabwe[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(4): 85-92.
[6] DONG Lina, ZHANG Wei, WANG Xue, CHEN Ling, YANG Jinzhong, MO Zifen. Remote sensing geological interpretation and uranium prospecting perspective analysis of Shengyuan volcanic basin in Jiangxi Province[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(4): 102-108.
[7] ZHANG Kun, LI Zongren, MA Shibin. Remote sensing geological interpretation based on ZY-1 02C satellite images: A case study of Pamir area, Tajikistan[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(3): 144-153.
[8] AN Zhihong, NIE Hongfeng, WANG Hao, JING Qingqing. Study and analysis of application of ZY-1 02C satellite data to remote sensing monitoring technology for exploration of mineral resources[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(2): 174-182.
[9] LU Yunge, LIU Cai, WANG Jiao. Integrated solutions for mine remote sensing monitoring based on domestic satellite images: A case study of Tibet[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(4): 85-90.
[10] XU Bing, FANG Chen. Data fusion methods of ZY-1 02C and ETM+ images and effect evaluation[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(3): 80-85.
[11] HU Weiguo, MENG Lingkui, ZHANG Dongying, FAN Zhiwei, CHENG Jianguo, LI Xiaohui. Methods of water extraction from ZY-1 02C satellite imagery[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(2): 43-47.
[12] ZHOU Wei, HUANG Wei, WANG Yanzuo, LI Jingming, LIU Ruoxi. Tentative construction of satellite data management and service system for ZY-1 02C[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(1): 179-185.
[13] Wuyunqiqige, MA Wei-feng, ZHANG Shi-zhong, TANG Xiang-dan, LIU Wen-ting. The Design and Dvelopment of the Interpreting Marks Management System for Geological Disasters Based on 3D[J]. REMOTE SENSING FOR LAND & RESOURCES, 2012, 24(2): 148-151.
[14] Ding Jiarui . SOME THINKING ABOUT REMOTE SENSING TECHNIQUE USED AT GEOLOGICAL WORK[J]. REMOTE SENSING FOR LAND & RESOURCES, 1996, 8(2): 1-9.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech