Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2016, Vol. 28 Issue (4) : 141-148     DOI: 10.6046/gtzyyg.2016.04.22
Technology Application |
Application of ZY-1 02C satellite data to hydrogeological investigation in Zanda area, Tibet
LI Xiaomin1,2, YAN Yunpeng3, LIU Gang3, LI Dongling1,2, ZHANG Xing1,2, ZHUANG Yongcheng1,2
1. Qinghai Key Laboratory for Geological Process and Mineral Resources in Northern Tibetan Plateau, Xining 810012, China;
2. Institute of Geological Survey of Qinghai Province, Xining 810012, China;
3. China Aero Geophysical Survey and Remote Sensing Center, Beijing 10083, China
Download: PDF(11196 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

In order to bring the potential of satellite data for hydrogeology into full play in China, the authors used satellite data of ZY-1 02C to investigate the hydrogeology in Zanda area of Tibet. The authors found 29 springs and spring groups, 14 groundwater discharge zones of different sizes, 3 water-controlling faults and 13 wetlands. And the six types of groundwater comprising pore water in the loose rock, fracture-pore water in the clastic rock, fracture - pore water in the layered rock, fissure karst water, fissure water in the massive rock and freezing layer water were recognized seperately. The genetic type of the Quaternary was divided in detail, and the rich area, general area and poor area of pore water in the loose rock were interpreted. The results of the investigation show that using remote sensing technology in the preliminary work of hydrogeological investigation can greatly reduce workload in the field. It can provide the basic hydrological data for the subsequent detailed hydrogeological survey, thus showing application value of ZY-1 02C satellite data in hydrogeological investigation.

Keywords remote sensing      multiscale      image segmentation      scale optimization     
:  TP79  
Issue Date: 20 October 2016
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Tao
YANG Xiaomei
TONG Liqiang
HE Peng
Cite this article:   
ZHANG Tao,YANG Xiaomei,TONG Liqiang, et al. Application of ZY-1 02C satellite data to hydrogeological investigation in Zanda area, Tibet[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(4): 141-148.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2016.04.22     OR     https://www.gtzyyg.com/EN/Y2016/V28/I4/141

[1] 刘汉湖,邓辉.遥感技术在地下水资源分析与评价中的应用——以那曲地区为例[J].水资源与水工程学报,2008,19(3):45-48. Liu H H,Deng H.Application of remote image in groundwater resources analysis and evaluation:A case about Naqu area in Tibet[J].Journal of Water Resources & Water Engineering,2008,19(3):45-48.
[2] 景志熙.遥感图象在区域水文地质普查中的应用——马关幅航卫片解译的几个实例[J].中国岩溶,1986(s1):29-32. Jing Z X.The application of remote sensing images to the regional hydrogeological reconnaissance[J].Carsologica Sinica,1986(s1):29-32.
[3] 陈玲,梁树能,周艳,等.国产高分卫星数据在高海拔地区地质调查中的应用潜力分析[J].国土资源遥感,2015,27(1):140-145.doi:10.6046/gtzyyg.2015.01.22. Chen L,Liang S N,Zhou Y,et al.Potential of applying domestic high-resolution remote sensing data to geological survey in high altitudes[J].Remote Sensing for Land and Resources,2015,27(1):140-145.doi:10.6046/gtzyyg.2015.01.22.
[4] 程洋,童立强,郭兆成,等.资源一号02C卫星数据在北京岩溶水资源勘查评价工程中的应用[J].国土资源遥感,2015,27(2):183-189.doi:10.6046/gtzyyg.2015.02.28. Cheng Y,Tong L Q,Guo Z C,et al.Application of satellite data of ZY1-02C to the exploration engineering of Karst water resources in Beijing[J].Remote Sensing for Land and Resources,2015,27(2):183-189.doi:10.6046/gtzyyg.2015.02.28.
[5] 贾春义,毛德章,董玉良,等.华北平原陆地卫星图象水文地质解译的初步实践[J].地质论评,1983,29(3):269-277. Jia C Y,Mao D Z,Dong Y L,et al.Hydrogeological interpretation of the Landsat images of the North China plain[J].Geological Review,1983,29(3):269-277.
[6] 赵保生,蒋瑞波.太行山东南麓南段水文地质遥感解译效果[J].中州煤炭,2002(2):7-9. Zhao B S,Jiang R B.Remote-sensing translating result on south hydrogeology of south eastern foot of Taihangshan Mountain[J].Zhongzhou Coal,2002(2):7-9.
[7] 江卫,李曦滨.遥感Landsat TM数据在水文地质测绘中的应用[J].河北建筑科技学院学报,2001,18(1):69-72. Jiang W,Li X B.Application of Landsite TM data of remote sensing in hydrological surveying and drawing[J].Journal of Hebei Institute of Architectural Science and Technology,2001,18(1):69-72.
[8] 费美高,许模.应用遥感图像信息研究青岛地区水文地质问题[J].成都理工学院学报,1996,23(1):39-48. Fei M G,Xu M.Research on the problem of hydrogeology by use of remote-sensing image information in the Qingdao area[J].Journal of Chengdu Institute of Technology,1996,23(1):39-48.
[9] 朱第植,徐洪展,郑纲,等.遥感技术在新疆民丰区域寻找地下水中的应用[J].煤田地质与勘探,2000,28(5):34-38. Zhu D Z,Xu H Z,Zheng G,et al.Application of remote sensing technique on locating underground water in Minfeng District in Xinjiang Auto-Nomous Region[J].Coal Geology & Exploration,2000,28(5):34-38.
[10] 周日平.遥感技术在西部生态环境建设和找水中的应用研究[J].遥感技术与应用,2001,16(1):45-48. Zhou R P.Remote sensing application research in ecological environment construction of the West China[J].Remote Sensing Technology and Application,2001,16(1):45-48.
[11] 周性和.山区地下水遥感解译[J].山地研究,1983,1(4):9-16. Zhou X H.Remote sensing interpretation of groundwater in mountainous region[J].Mountain Research,1983,1(4):9-16.
[12] 冯文珍.应用卫星遥感影像分析青岛市地下水资源[J].海洋科学,1989(3):1-6. Feng W Z.A preliminary study of ground water enriched zone in Qingdao with Landsat remote sensing technique[J].Marine Sciences,1989(3):1-6.
[13] 华晓凌,晋华.遥感技术在地下水研究中的应用[J].山西水利科技,2004(4):29-30. Hua X L,Jin H.Application of remote sensing technology for research of ground water[J].Shanxi Hydrotechnics,2004(4):29-30.
[14] 盖利亚,孙银行,李巨芬,等.遥感技术在基岩山区地下水勘查中的应用——以太行山区为例[J].测绘科学,2012,37(3):66-68,43. Gai L Y,Sun Y H,Li J F,et al.Application of remote sensing in underground water exploration of bedrock area:A case study of Taihang Mountains[J].Science of Surveying and Mapping,2012,37(3):66-68,43.
[15] 南卓铜,黄培培,赵林.青藏高原西部区域多年冻土分布模拟及其下限估算[J].地理学报,2013,68(3):318-327. Nan Z T,Huang P P,Zhao L.Permafrost distribution modeling and depth estimation in the Western Qinghai-Tibet Plateau[J].Acta Geographica Sinica,2013,68(3):318-327.

[1] LI Weiguang, HOU Meiting. A review of reconstruction methods for remote-sensing-based time series data of vegetation and some examples[J]. Remote Sensing for Natural Resources, 2022, 34(1): 1-9.
[2] DING Bo, LI Wei, HU Ke. Inversion of total suspended matter concentration in Maowei Sea and its estuary, Southwest China using contemporaneous optical data and GF SAR data[J]. Remote Sensing for Natural Resources, 2022, 34(1): 10-17.
[3] GAO Qi, WANG Yuzhen, FENG Chunhui, MA Ziqiang, LIU Weiyang, PENG Jie, JI Yanzhen. Remote sensing inversion of desert soil moisture based on improved spectral indices[J]. Remote Sensing for Natural Resources, 2022, 34(1): 142-150.
[4] ZHANG Qinrui, ZHAO Liangjun, LIN Guojun, WAN Honglin. Ecological environment assessment of three-river confluence in Yibin City using improved remote sensing ecological index[J]. Remote Sensing for Natural Resources, 2022, 34(1): 230-237.
[5] HE Peng, TONG Liqiang, GUO Zhaocheng, TU Jienan, WANG Genhou. A study on hidden risks of glacial lake outburst floods based on relief amplitude: A case study of eastern Shishapangma[J]. Remote Sensing for Natural Resources, 2022, 34(1): 257-264.
[6] LIU Wen, WANG Meng, SONG Ban, YU Tianbin, HUANG Xichao, JIANG Yu, SUN Yujiang. Surveys and chain structure study of potential hazards of ice avalanches based on optical remote sensing technology: A case study of southeast Tibet[J]. Remote Sensing for Natural Resources, 2022, 34(1): 265-276.
[7] WANG Qian, REN Guangli. Application of hyperspectral remote sensing data-based anomaly extraction in copper-gold prospecting in the Solake area in the Altyn metallogenic belt, Xinjiang[J]. Remote Sensing for Natural Resources, 2022, 34(1): 277-285.
[8] LYU Pin, XIONG Liyuan, XU Zhengqiang, ZHOU Xuecheng. FME-based method for attribute consistency checking of vector data of mines obtained from remote sensing monitoring[J]. Remote Sensing for Natural Resources, 2022, 34(1): 293-298.
[9] ZHANG Daming, ZHANG Xueyong, LI Lu, LIU Huayong. Remote sensing image segmentation based on Parzen window density estimation of super-pixels[J]. Remote Sensing for Natural Resources, 2022, 34(1): 53-60.
[10] XUE Bai, WANG Yizhe, LIU Shuhan, YUE Mingyu, WANG Yiying, ZHAO Shihu. Change detection of high-resolution remote sensing images based on Siamese network[J]. Remote Sensing for Natural Resources, 2022, 34(1): 61-66.
[11] SONG Renbo, ZHU Yuxin, GUO Renjie, ZHAO Pengfei, ZHAO Kexin, ZHU Jie, CHEN Ying. A method for 3D modeling of urban buildings based on multi-source data integration[J]. Remote Sensing for Natural Resources, 2022, 34(1): 93-105.
[12] AI Lu, SUN Shuyi, LI Shuguang, MA Hongzhang. Research progress on the cooperative inversion of soil moisture using optical and SAR remote sensing[J]. Remote Sensing for Natural Resources, 2021, 33(4): 10-18.
[13] LI Teya, SONG Yan, YU Xinli, ZHOU Yuanxiu. Monthly production estimation model for steel companies based on inversion of satellite thermal infrared temperature[J]. Remote Sensing for Natural Resources, 2021, 33(4): 121-129.
[14] LIU Bailu, GUAN Lei. An improved method for thermal stress detection of coral bleaching in the South China Sea[J]. Remote Sensing for Natural Resources, 2021, 33(4): 136-142.
[15] FAN Yinglin, LOU Debo, ZHANG Changqing, WEI Yingjuan, JIA Fudong. Information extraction technologies of iron mine tailings based on object-oriented classification: A case study of Beijing-2 remote sensing images of the Qianxi Area, Hebei Province[J]. Remote Sensing for Natural Resources, 2021, 33(4): 153-161.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech