Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2015, Vol. 27 Issue (4) : 93-101     DOI: 10.6046/gtzyyg.2015.04.15
Technology Application |
Remote sensing geological characteristics and prospecting of the BIF-type iron deposits in Pilbara Craton of Western Australia
KUAI Kaifu1, XU Wenbin1, HUANG Zhicai1,2, LI Su1
1. Hangzhou Dadi Technology Co., Ltd. Hangzhou 310012, China;
2. Department of Earth Sciences, Zhejiang University, Hangzhou 310027, China
Download: PDF(16473 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

In this paper, the satellite remote sensing interpretation of geology and minerals in Pilbara Craton of Western Australia was carried out by using ETM satellite remote sensing images, and the mineral alteration information of the target area was extracted by using ASTER satellite remote sensing images so as to do further research on metamorphosed sedimentary type(banded iron formation, BIF-type)iron deposits in Hamersley Basin of Western Australia from the remote sensing angle. In combination with traditional theory of geology and mineral resources and relevant literatures, the remote sensing geological characteristics and metallogenic mechanism of BIF- type iron deposits in the study area were dissected, contrasted and studied. On such a basis, the remote sensing geological prospecting model of this type of iron deposits was established, and the prospective areas were delineated. It is expected to make a breakthrough in prospecting technology of BIF-type iron deposits and to provide a practical guide in search for this type of iron deposits. During the field investigation of the above-mentioned prospective areas, the authors found that Rio Tinto group in Australia already intended to build a large iron mine in C area of Newman-BHP Billiton and had basically completed the field leveling work, which verifies the practical significance of this paper.

Keywords Qiangduo area      multi-source remote sensing data      geological structural interpretation     
:  TP79  
  P61  
Issue Date: 23 July 2015
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LIU Xinxing
CHEN Jianping
ZENG Min
DAI Jingjing
PEI Yingru
REN Mengyi
WANG Na
Cite this article:   
LIU Xinxing,CHEN Jianping,ZENG Min, et al. Remote sensing geological characteristics and prospecting of the BIF-type iron deposits in Pilbara Craton of Western Australia[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(4): 93-101.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2015.04.15     OR     https://www.gtzyyg.com/EN/Y2015/V27/I4/93

[1] 查德威克J著.李公照译.澳大利亚皮尔巴拉矿区的发展[J].矿业工程, 1992(2):6-11, 16. Chadwick J.Translated by Li G Z.The development of Pilbara mining area in Australia[J].Mining engineering, 1992(2):6-11, 16.

[2] 德拉蒙德B J, 雷蒙德E, 史密斯R C, 等著.田书文译.从深部地震测深资料探讨皮尔巴拉和伊尔冈地块北部的地壳构造[J].国外前寒武纪地质, 1980(9):45-46. Drummond B J, Raymond E, Smith R C, et al.Translated by Tian S W.Deep seismic sounding data reveals crustal tectonic of Northern Pilbara and Yilgarn Craton[J].Overseas Precambrian Geology, 1980(9):45-46.

[3] 关泽群, 刘继琳.遥感图像解译[M].武汉:武汉大学出版社, 2007. Guan Z Q, Liu J L.Remote Sensing Image Interpretation[M].Wuhan:Wuha University Press, 2007.

[4] 希克曼A著.闻桂芹译.皮尔巴拉地块的地壳演化[J].国外前寒武纪地质, 1980(9):76-77. Hickman A.Translated by Wen G Q.Crustal evolution in the Pilbara Craton[J].Overseas Precambrian Geology, 1980(9):76-77.

[5] 王锋德, 赵志芳, 毛雨景, 等.云南绿春地区遥感地质特征与找矿远景综合分析[J].国土资源遥感, 2012, 24(2):98-104.doi:10.6046/gtzyyg.2012.02.18. Wang F D, Zhao Z F, Mao Y J.A comprehensive analysis of remote sensing geological characteristics and ore prospecting perspective of Lvchun area, Yunnan Province[J].Remote Sensing for Land and Resources, 2012, 24(2):98-104.doi:10.6046/gtzyyg.2012.02.18.

[6] 荆凤, 陈建平.矿化蚀变信息的遥感提取方法综述[J].遥感信息, 2005(2):62-65. Jing F, Chen J P.The review of the alteration information extraction with remote sensing[J].Remote Sensing Information, 2005(2):62-65.

[7] 张永庭, 张晓东, 刘自增, 等.宁夏区地质构造与围岩蚀变遥感信息提取[J].国土资源遥感, 2012, 24(1):132-136.doi:10.6046/gtzyyg.2012.01.23. Zhang Y T, Zhang X D, Liu Z Z.The extraction of fault structure and wall rock alteration remote sensing information in Ningxia[J].Remote Sensing for Land and Resources, 2012, 24(1):132-136.doi:10.6046/gtzyyg.2012.01.23.

[8] Loughlin, W P.Principal component analysis for alteration mapping[J].Photogrammetric Engineering and Remote Sensing, 1991(57):1163-1169.

[9] 李明.利用遥感等手段圈定紫金山铜-金矿床外围找矿有利区[J].国土资源遥感, 2012, 24(1):137-142.doi:10.6046/gtzyyg.2012.01.24. Ling M.The delineation of potential ore-prospecting areas in the Zijinshan copper-gold deposit and its outskirts by using remote sensing and other means[J]. Remote Sensing for Land and Resources, 2012, 24(1):137-142.doi:10.6046/gtzyyg.2012.01.24.

[10] 刘文兰, 张微.遥感构造蚀变异常信息提取及找矿预测——以老挝为例[J].国土资源遥感, 2012, 24(2):68-74.doi:10.6046/gtzyyg.2012.02.13. Liu W L, Zhang W.Remote sensing structural alteration information extraction and ore progmosis:A case study of Laos[J].Remote Sensing for Land and Resources, 2012, 24(2):68-74.doi:10.6046/gtzyyg.2012.02.13.

[1] Wei ZHANG, Jianwei QI, Ying CHEN, Xu HAN. A study of block adjustment of domestic multi-source high resolution satellite images[J]. Remote Sensing for Land & Resources, 2019, 31(1): 125-132.
[2] Jiasi YI, Xiangyun HU. Extracting impervious surfaces from multi-source remote sensing data based on Grabcut[J]. Remote Sensing for Land & Resources, 2018, 30(3): 174-180.
[3] Yangming WANG, Jingfa ZHANG, Zhirong LIU, Xuhui SHEN. Active faults interpretation of Shannan area in Tibet based on multi-source remote sensing data[J]. Remote Sensing for Land & Resources, 2018, 30(3): 230-237.
[4] Xiaogang HOU, Zhaojun ZHENG, Shuai LI, Xuehua CHEN, Yu CUI. Generation of daily cloudless snow cover product in the past 15 years in Xinjiang and accuracy validation[J]. Remote Sensing for Land & Resources, 2018, 30(2): 214-222.
[5] DONG Lina, ZHANG Wei, WANG Xue, CHEN Ling, YANG Jinzhong, MO Zifen. Remote sensing geological interpretation and uranium prospecting perspective analysis of Shengyuan volcanic basin in Jiangxi Province[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(4): 102-108.
[6] LIU Xinxing, CHEN Jianping, ZENG Min, DAI Jingjing, PEI Yingru, REN Mengyi, WANG Na. Geological structural interpretation of Qiangduo area in Tibet based on multi-source remote sensing data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(3): 154-160.
[7] XU Xu, GAO Ang, ZHU Pingping, ZHOU Zengke. Valuation of ecosystem services based on multi-source remote sensing data:A case study of Hebei Province[J]. REMOTE SENSING FOR LAND & RESOURCES, 2013, 25(4): 180-186.
[8] LI Feng, GAO Zhao-Liang. A Hybrid Bayesian Network Classifier for Multi-source Remote Sensing Data in Land Use Classification[J]. REMOTE SENSING FOR LAND & RESOURCES, 2011, 23(2): 47-52.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech