Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2016, Vol. 28 Issue (2) : 21-27     DOI: 10.6046/gtzyyg.2016.02.04
Technology and Methodology |
Analysis of Landsat8 satellite remote sensing data preprocessing
ZHU Jia
Southwest China Institute of Electronic Technology, Chengdu 610036, China
Download: PDF(1099 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

The Landsat series satellites are the remote sensing resource series satellites, which are jointly managed by National Aeronautics and Space Administration and United States Geological Survey. Large quantities of high-resolution and stable image data provided by the Landsat series satellites have created good opportunities for the earth remote sensing exploration activities in the past forty years. Satellite remote sensing data preprocessing is the first step for obtaining remote sensing image, and has an important impact on the quality of the satellite remote sensing product. Aimed at tackling the Landsat8 raw data, the authors dealt in detail with the space data transmission protocol and data transmission format for Landsat8 data downlink. The preprocessing steps for raw data were analyzed, which included synchronization, transfer frame analyzing, unpack, mission data extracting, etc. In addition, the procedure of 0-level image product acquisition was described. Specifically, based on CCSDS(consultative committee for space data systems)recommended standard, the authors also discussed the method and technological process of lossless data decompression for Operational Land Imager (OLI)compressed data. The Landsat8 Level 0 data product obtained by the data preprocessing can provide high-quality basic images for the application of Landsat8 satellite remote sensing data.

Keywords UAV remote sensing      image processing      software      geological disasters     
:  TP751.1  
Issue Date: 14 April 2016
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
JIN Dingjian
ZHI Xiaodong
WANG Jianchao
ZHANG Dandan
SHANG Boxuan
Cite this article:   
JIN Dingjian,ZHI Xiaodong,WANG Jianchao, et al. Analysis of Landsat8 satellite remote sensing data preprocessing[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(2): 21-27.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2016.02.04     OR     https://www.gtzyyg.com/EN/Y2016/V28/I2/21

[1] 王树根.Landsat系统回顾与展望[J].测绘信息与工程,1998(1):1-6. Wang S G.Review and prospect of the Landsat system[J].Journal of Geomatics,1998(1):1-6.

[2] 张玉君.Landsat8简介[J].国土资源遥感,2013,25(1):176-177.doi:10.6046/gtzyyg.2013.01.30. Zhang Y J.Introduction to the Landsat8[J].Remote Sensing for Land and Resources,2013,25(1):176-177.doi:10.6046/gtzyyg.2013.01.30.

[3] 初庆伟,张洪群,吴业炜,等.Landsat-8卫星数据应用探讨[J].遥感信息,2013,28(4):110-114. Chu Q W,Zhang H Q,Wu Y W,et al.Application research of Landsat-8[J].Remote Sensing Information,2013,28(4):110-114.

[4] CCSDS.CCSDS 121.0-B-2,Lossless Data Compression,Blue Book,Recommended Standard,Issue 2[S].Washington DC,USA:CCSDS,2012.

[5] USGS.Ldcm-Isd-010,Landsat Data Continuity Mission(LDCM) Space to International Cooperator Interface Specification Document,Version 1.0[S].USGS:2011.

[6] USGS.LDCM-DFCB-004,Landsat Data Continuity Mission(LDCM) Level 1(L1) Data Format Control Book(DFCB),Version 6.0[S].USGS:2012.

[7] 唐海蓉.Landsat7 ETM+数据处理技术研究[D].北京:中国科学院研究生院(电子学研究所),2003. Tang H R.Research on Landsat7 ETM+ Data Processing[D].Beijing:Institute of Electronics,Chinese Academy of Sciences,2003.

[8] 初庆伟.Landsat-8卫星数据预处理关键技术研究[D].北京:中国科学院大学,2013. Chu Q W.The Research of Key Technology of Landsat-8 Data Preprocessing[D].Beijing:University of Chinese Academy of Sciences,2013.

[9] 宋鹏,张晓林.关于CCSDS无损数据压缩建议的初步研究[J].遥测遥控,2001,22(1):8-13. Song P,Zhang X L.A Preliminary study of CCSDS lossless data compression proposals[J].Journal of Telemetry,Tracking,and Command,2001,22(1):8-13.

[10] 李维忠,贾小铁,徐志立.用于空间数据系统的无损数据压缩技术[J].计算机科学,2003,33(11):122-124. Li W Z,Jia X T,Xu Z L.Lossless data com-pression for the space data system[J].Com-puter Science,2003,33(11):122-124.

[11] 张兆亮.基于CCSDS算法的星载图像压缩系统的FPGA实现[D].西安:西安电子科技大学,2010. Zhang Z L.Implementation of CCSDS Satellite Image Compression System with FPGAs[D].Xi'an:Xidian University,2010.

[12] 朱云华,王凤阳,刘泳,等.CCSDS无损数据压缩算法的实现与应用研究[J].中国空间科学技术,2008,28(4):40-46. Zhu Y H,Wang F Y,Liu Y,et al.Implementation and application study of CCSDS lossless data compression algorithm[J].Chinese Space Science and Technology,2008,28(4):40-46.

[1] BAI Junlong, WANG Zhangqiong, YAN Haitao. A K-means clustering-guided threshold-based approach to classifying UAV remote sensed images[J]. Remote Sensing for Natural Resources, 2021, 33(3): 114-120.
[2] WANG Xiaobing. Denoising algorithm based on the fusion of lifting wavelet thresholding and multidirectional edge detection of remote sensing image of mining area[J]. Remote Sensing for Land & Resources, 2020, 32(4): 46-52.
[3] Dingjian JIN, Jianchao WANG, Fang WU, Zihong GAO, Yachao HAN, Qi LI. Aerial remote sensing technology and its applications in geological survey[J]. Remote Sensing for Land & Resources, 2019, 31(4): 1-10.
[4] WU Yongliang, CHEN Jianping, YAO Shupeng, XU Bin. Application of UAV low-altitude remote sensing[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(4): 120-125.
[5] JINAG Wei, HE Guojin, LIU Huichan, LONG Tengfei, WANG Wei, ZHENG Shouzhu, MA Xiaoxiao. Research on China’s land image mosaicking and mapping technology based on GF-1 satellite WFV data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(4): 190-196.
[6] YANG Jinzhong, NIE Hongfeng, JING Qingqing. Preliminary analysis of mine geo-environment status and existing problems in China[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(2): 1-7.
[7] LI Wei, CHEN Xiuwan, PENG Xuefeng, XIAO Han. GNSS-R technique for soil moisture estimation: Framework and software implementation[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(1): 213-220.
[8] ZHANG Yongmei, YANG Fei, XU Jing. An improved length variable angle chain code algorithm and its application to dock identification[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(4): 164-169.
[9] JIN Dingjian, ZHI Xiaodong, WANG Jianchao, ZHANG Dandan, SHANG Boxuan. Comparison of UAV remote sensing image processing software for geological disasters monitoring[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(1): 183-189.
[10] HU Yingjin, CUI Haiming. Progress in the study of crop yield estimation methods based on remote sensing and geographic information system[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(4): 1-7.
[11] WEI Yongming, WEI Xianhu, CHEN Yu. Analysis of distribution regularity and development tendency of earthquake secondary geohazards in Yingxiu-Maoxian section along the Minjiang River[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(4): 179-186.
[12] XU Yueren, HE Honglin, CHEN Lize, SHEN Xuhui. Dynamic remote sensing interpretation of geological disasters in Nanping City of Fujian Province using CBERS serial data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(3): 153-159.
[13] TANG Yuanbin, LIU Wen, REN Shaohua. Tideland height measurement based on UAV remote sensing and tidal observation[J]. REMOTE SENSING FOR LAND & RESOURCES, 2013, 25(2): 42-46.
[14] CHEN Yiguo. Crack detection above buildings based on the infrared thermal imaging technology[J]. REMOTE SENSING FOR LAND & RESOURCES, 2013, 25(2): 53-56.
[15] ZHANG Mingyang, MA Weifeng, TANG Xiangdan, LI Xianwei. Automatic mapping of the results of 3D remote sensing interpretation of geological disasters[J]. REMOTE SENSING FOR LAND & RESOURCES, 2013, 25(2): 164-167.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech