Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2017, Vol. 29 Issue (4) : 120-125     DOI: 10.6046/gtzyyg.2017.04.18
|
Application of UAV low-altitude remote sensing
WU Yongliang1,2,3, CHEN Jianping1,2, YAO Shupeng1,2, XU Bin1,2
1. School of Earth Sciences and Resources, China University of Geosciences(Beijing), Beijing 100083, China;
2. Beijing Key Laboratory of Development and Research for Land Resources Information, Beijing 100083, China;
3. China Academy of Aerospace Standardization and Product Assurance, Beijing 100071, China
Download: PDF(3907 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  Unmanned aerial vehicle (UAV) low-altitude remote sensing is an extension and supplement of the traditional aerial photogrammetry, characterized by the airspace application convenience, short launch preparation time, and being less influenced by meteorological conditions, landing site restrictions and regional geological conditions. In order to promote the UAV low-altitude remote sensing technical application, the authors studied its key technologies. The function of UAV low-altitude remote sensing system and the factors considered in the design were analyzed, and the survey process was summarized. A complete technical route of UAV low-altitude remote sensing using in geological survey was formed. To prove the practicability of this technology method, the low-altitude UAV remote sensing system was built up for application in Zhoukoudian area. The results show that this means can provide timely and effective image for geological survey and emergence response survey, and has reference significance for low-altitude UAV remote sensing engineering application.
Keywords hyperspectral remote sensing      alteration minerals      gold deposit      prospecting prediction      Beishan     
:  TP79  
Issue Date: 04 December 2017
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
REN Guangli
YANG Min
LI Jianqiang
GAO Ting
LIANG Nan
YI Huan
YANG Junlu
Cite this article:   
REN Guangli,YANG Min,LI Jianqiang, et al. Application of UAV low-altitude remote sensing[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(4): 120-125.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2017.04.18     OR     https://www.gtzyyg.com/EN/Y2017/V29/I4/120
[1] Colomina I,Molina P.Unmanned aerial systems for photogrammetry and remote sensing:A review[J].ISPRS Journal of Photogrammetry and Remote Sensing,2014,92:79-97.
[2] 李德仁,李 明.无人机遥感系统的研究进展与应用前景[J].武汉大学学报(信息科学版),2014,39(5):505-513,540.
Li D R,Li M.Research advance and application prospect of unmanned aerial vehicle remote sensing system[J].Geomatics and Information Science of Wuhan University,2014,39(5):505-513,540.
[3] 无人机航测[EB/OL].[2016].http://baike.baidu.com/view/5426384.htm.
UAV aerial photography[EB/OL].[2016].http://baike.baidu.com/view/5426384.htm.
[4] 韩文权,任幼蓉,赵少华.无人机遥感在应对地质灾害中的主要应用[J].地理空间信息,2011,9(5):6-8,163.
Han W Q,Ren Y R,Zhao S H.Primary usages of UAV remote sensing in geological disaster monitoring and rescuing[J].Geospatial Information,2011,9(5):6-8,163.
[5] 何 敬,李永树,鲁 恒,等.无人机影像地图制作实验研究[J].国土资源遥感,2011,23(4):74-77.doi:10.6046/gtzyyg.2011.04.14.
He J,Li Y S,Lu H,et al.Research on producing image maps based on UAV imagery data[J].Remote Sensing for Land and Resources,2011,23(4):74-77.doi:10.6046/gtzyyg.2011.04.14.
[6] 王玉鹏.无人机低空遥感影像的应用研究[D].焦作:河南理工大学,2011.
Wang Y P.Study on Low-Level Remote Sensing Images of UAV[D].Jiaozuo:Institute of technology of Henan,2011.
[7] 张祖勋,张剑清.数字摄影测量学[M].2版.武汉:武汉大学出版社,2012.
Zhang Z X,Zhang J Q.Photogrammetry[M].2nd ed.Wuhan:Wuhan University Press,2012.
[8] 金鼎坚,支晓栋,王建超,等.面向地质灾害调查的无人机遥感影像处理软件比较[J].国土资源遥感,2016,28(1):183-189.doi:10.6046/gtzyyg.2016.01.27.
Jin D J,Zhi X D,Wang J C,et al.Comparison of UAV remote sensing image processing software for geological disasters monitoring[J].Remote Sensing for Land and Resources,2016,28(1):183-189.doi:10.6046/gtzyyg.2016.01.27.
[9] 赵云景,龚绪才,杜文俊,等.PhotoScan Pro软件在无人机应急航摄中的应用[J].国土资源遥感,2015,27(4):179-182.doi:10.6046/gtzyyg.2015.04.27.
Zhao Y J,Gong X C,Du W J,et al.UAV imagery data processing for emergency response based on PhotoScan Pro[J].Remote Sensing for Land and Resources,2015,27(4):179-182.doi:10.6046/gtzyyg.2015.04.27.
[10] Turner D,Lucieer A,Watson C.An automated technique for generating georectified mosaics from ultra-high resolution unmanned aerial vehicle(UAV) imagery,based on structure from motion(SFM) point clouds[J].Remote Sensing,2012,4(5):1392-1410.
[11] Hardin P J,Jensen R R.Small-scale unmanned aerial vehicles in environmental remote sensing:Challenges and opportunities[J].GIScience and Remote Sensing,2011,48(1):99-111.
[12] Pix4Dmapper软件数据处理操作手册[EB/OL].[2015].http://www.skyway-info.com/cn.
Operation manual for data processing of Pix4Dmapper software[EB/OL].[2015].http://www.skyway-info.com/cn.
[13] Jiang H B,Su Y Y,Jiao Q S,et al.Typical geologic disaster surveying in Wenchuan 8.0 earthquake zone using high resolution ground LiDAR and UAV remote sensing[C]//Lidar remote sensing for environmental monitoring,2014,9262:926219.
[1] WANG Qian, REN Guangli. Application of hyperspectral remote sensing data-based anomaly extraction in copper-gold prospecting in the Solake area in the Altyn metallogenic belt, Xinjiang[J]. Remote Sensing for Natural Resources, 2022, 34(1): 277-285.
[2] GAO Wenlong, ZHANG Shengwei, LIN Xi, LUO Meng, REN Zhaoyi. The remote sensing-based estimation and spatial-temporal dynamic analysis of SOM in coal mining[J]. Remote Sensing for Natural Resources, 2021, 33(4): 235-242.
[3] JIANG Yanan, ZHANG Xin, ZHANG Chunlei, ZHONG Chengcheng, ZHAO Junfang. Classification of remote sensing images based on multi-scale feature fusion using local binary patterns[J]. Remote Sensing for Natural Resources, 2021, 33(3): 36-44.
[4] ZANG Chuankai, SHEN Fang, YANG Zhengdong. Aquatic environmental monitoring of inland waters based on UAV hyperspectral remote sensing[J]. Remote Sensing for Natural Resources, 2021, 33(3): 45-53.
[5] HU Xinyu, XU Zhanghua, CHEN Wenhui, CHEN Qiuxia, WANG Lin, LIU Hui, LIU Zhicai. Construction and application effect of normalized shadow vegetation index NSVI based on PROBA/CHRIS image[J]. Remote Sensing for Land & Resources, 2021, 33(2): 55-65.
[6] WANG Ruijun, ZHANG Chunlei, SUN Yongbin, WANG Shen, DONG Shuangfa, WANG Yongjun, YAN Bokun. Application of hyperspectral spectroscopy to constructing polymetallic prospecting model in Hongshan, Gansu Province[J]. Remote Sensing for Land & Resources, 2020, 32(3): 222-231.
[7] Honglin MA, Weijie JIA, Changliang FU, Wei LI. Extraction of geological structural and alteration information and the prediction of metallogenic favorable locations in northeastern Jeddah, Saudi Arabia[J]. Remote Sensing for Land & Resources, 2019, 31(3): 174-182.
[8] Jianyu LIU, Ling CHEN, Wei LI, Genhou WANG, Bo WANG. An improved method for extracting alteration related to the ductile shear zone type gold deposits using ASTER data[J]. Remote Sensing for Land & Resources, 2019, 31(1): 229-236.
[9] Donghui ZHANG, Yingjun ZHAO, Kai QIN. Design and construction of the typical ground target spectral information system[J]. Remote Sensing for Land & Resources, 2018, 30(4): 206-211.
[10] Jing CUI, Xinfeng DONG, Rui DING, Shimin ZHANG, Conghe WANG, Hengxin LU, Yanyun SUN. Stratigraphic division of loess along loess profile based on hyperspectral remote sensing[J]. Remote Sensing for Land & Resources, 2018, 30(2): 202-207.
[11] REN Guangli, YANG Min, LI Jianqiang, GAO Ting, LIANG Nan, YI Huan, YANG Junlu. Application of hyperspectral alteration information to gold prospecting: A case study of Fangshankou area,Beishan[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(3): 182-190.
[12] SU Hongjun, LIU Hao. A novel dynamic classifier selection algorithm using spatial-spectral information for hyperspectral classification[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(2): 15-21.
[13] LIN Na, YANG Wunian, WANG Bin. Pixel un-mixing for hyperspectral remote sensing image based on kernel method[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(1): 14-20.
[14] CHAI Ying, RUAN Renzong, CHAI Guowu, FU Qiaoni. Species identification of wetland vegetation based on spectral characteristics[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(3): 86-90.
[15] DAI Xiaoai, JIA Hujun, ZHANG Xiaoxue, WU Fenfang, GUO Shouheng, YANG Wunian, YANG Ye. Identification of hyperspectral features for subalpine typical vegetation in the upper reaches of the Minjiang River[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(3): 174-180.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech