|
|
|
|
|
|
Remote sensing image retrieval based on tolerance granular computing theory |
YANG Ping1,2, LI Yikun1,2, HU Yuxi3, YANG Shuwen1,2,4 |
1. Faculty of Geomatics, Lanzhou Jiaotong University, Lanzhou 730070, China; 2. Gansu Provincial Engineering Laboratory for National Geographic State Monitoring, Lanzhou 730070, China; 3. Xi’an Mapping and Printing Company of ARSC, Xi’an 710054, China; 4. Gansu Province Key Laboratory of Remote Sensing, Lanzhou 730000, China |
|
|
Abstract In order to improve efficiency and accuracy of remote sensing image retrieval, this paper proposes a remote sensing image retrieval approach based on granular computing model. Firstly, according to the tolerance granular computing theory, a series of concepts are defined, such as region tolerance granule, image tolerance granule and regional tolerance granular information table, and remote sensing images are granulated. Secondly, the region tolerance granular similarity is calculated. Finally, the remote sensing image similarity model is built combining tolerance granular computing and image integrated region matching algorithm. Using IKONOS data, the authors verified the two retrieval algorithms. The experimental results show that the precision of proposed approach is increased by 12.08% in comparison with original integrated region matching algorithm. Therefore, it can be concluded that the proposed approach can meet the users’ requirements.
|
Keywords
South-to-North Water Transfer Project
LUCC
CA-Markov
PSR model
ecological security
|
|
Issue Date: 04 December 2017
|
|
|
[1] Wang M,Song T Y.Remote sensing image retrieval by scene semantic matching[J].IEEE Transactions on Geoscience and Remote Sensing,2013,51(5):2874-2886. [2] Smeulders A W M,Worring M,Santini S,et al.Content-based image retrieval at the end of the early years[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(12):1349-1380. [3] 杜根远.海量遥感图像内容检索关键技术研究[D].成都:成都理工大学,2011. Du G Y.Study on the Key Technology of Large-Scale Content Based Remote Sensing Image Retrieval[D].Chengdu:Chengdu University of Technology,2011. [4] 李双群,徐久成,张灵均,等.基于相容粒的彩色图像检索算法[J].广西师范大学学报(自然科学版),2011,29(3):173-178. Li S Q,Xu J C,Zhang J L,et al.Color image retrieval based on tolerance granules[J].Journal of Guangxi Normal University(Natural Science Edition),2011,29(3):173-178. [5] Xu X L,Zhang L B,Yu Z Z,et al.Image retrieval using multi-granularity color features[C]//Proceedings of International Conference on Audio,Language and Image Processing.Shanghai:IEEE,2008:1584-1589. [6] Ma Y Y,Wang C,Xu J C.Image retrieval system based on color feature of granular computing[C]//Proceedings of the 2010 2nd International Workshop on Intelligent Systems and Applications.Wuhan:IEEE,2010:1-3. [7] Fei X,Liu C S.Multi-granular method for retrieving Thangka images[C]//Proceedings of 2014 International Conference on Progress in Informatics and Computing(PIC).Shanghai:IEEE,2014:46-50. [8] Wang J Z,Li J,Wiederhold G.SIMPLIcity:Semantics-sensitive integrated matching for picture libraries[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2001,23(9):947-963 [9] Doherty P,Łukaszewicz W,Szałas A.Tolerance spaces and approximative representational structures[M]//Günter A,Kruse R,Neumann B.KI 2003:Advances in Artificial Intelligence.Berlin,Heidelberg:Springer,2003:475-489. [10] 孟 军.相容粒计算模型及其数据挖掘研究[D].大连:大连理工大学,2012. Meng J.Tolerance Granular Computing Model and Its Research on Data Mining[D].Dalian:Dalian University of Technology,2012. [11] 郑 征.相容粒度空间模型及其应用研究[D].北京:中国科学院研究生院(计算技术研究所),2006. Zheng Z.Tolerance Granular Space and Its Applications[D].Beijing:Chinese Academy of Science(Institute of Computing Technology),2006. [12] 刘 韬,李向军,邱桃荣,等.一种基于相容粒计算模型的文章相似度计算方法[J].广西师范大学学报(自然科学版),2010,28(3):135-139. Liu T,Li X J,Qiu T R.An approach to computing similarity degree between Chinese articles based on tolerance granular computing model[J].Journal of Guangxi Normal University(Natural Science Edition),2010,28(3):135-139. [13] Li Y K,Bretschneider T R.Semantic-sensitive satellite image retrieval[J].IEEE Transactions on Geoscience and Remote Sensing,2007,45(4):853-860. |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|