Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2017, Vol. 29 Issue (4) : 43-47     DOI: 10.6046/gtzyyg.2017.04.08
|
Remote sensing image retrieval based on tolerance granular computing theory
YANG Ping1,2, LI Yikun1,2, HU Yuxi3, YANG Shuwen1,2,4
1. Faculty of Geomatics, Lanzhou Jiaotong University, Lanzhou 730070, China;
2. Gansu Provincial Engineering Laboratory for National Geographic State Monitoring, Lanzhou 730070, China;
3. Xi’an Mapping and Printing Company of ARSC, Xi’an 710054, China;
4. Gansu Province Key Laboratory of Remote Sensing, Lanzhou 730000, China
Download: PDF(2705 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  In order to improve efficiency and accuracy of remote sensing image retrieval, this paper proposes a remote sensing image retrieval approach based on granular computing model. Firstly, according to the tolerance granular computing theory, a series of concepts are defined, such as region tolerance granule, image tolerance granule and regional tolerance granular information table, and remote sensing images are granulated. Secondly, the region tolerance granular similarity is calculated. Finally, the remote sensing image similarity model is built combining tolerance granular computing and image integrated region matching algorithm. Using IKONOS data, the authors verified the two retrieval algorithms. The experimental results show that the precision of proposed approach is increased by 12.08% in comparison with original integrated region matching algorithm. Therefore, it can be concluded that the proposed approach can meet the users’ requirements.
Keywords South-to-North Water Transfer Project      LUCC      CA-Markov      PSR model      ecological security     
:  TP751.1  
Issue Date: 04 December 2017
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
FANG Guohua
ZHOU Lei
WEN Xin
XUE Liuyu
YAN Chunhua
Cite this article:   
FANG Guohua,ZHOU Lei,WEN Xin, et al. Remote sensing image retrieval based on tolerance granular computing theory[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(4): 43-47.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2017.04.08     OR     https://www.gtzyyg.com/EN/Y2017/V29/I4/43
[1] Wang M,Song T Y.Remote sensing image retrieval by scene semantic matching[J].IEEE Transactions on Geoscience and Remote Sensing,2013,51(5):2874-2886.
[2] Smeulders A W M,Worring M,Santini S,et al.Content-based image retrieval at the end of the early years[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(12):1349-1380.
[3] 杜根远.海量遥感图像内容检索关键技术研究[D].成都:成都理工大学,2011.
Du G Y.Study on the Key Technology of Large-Scale Content Based Remote Sensing Image Retrieval[D].Chengdu:Chengdu University of Technology,2011.
[4] 李双群,徐久成,张灵均,等.基于相容粒的彩色图像检索算法[J].广西师范大学学报(自然科学版),2011,29(3):173-178.
Li S Q,Xu J C,Zhang J L,et al.Color image retrieval based on tolerance granules[J].Journal of Guangxi Normal University(Natural Science Edition),2011,29(3):173-178.
[5] Xu X L,Zhang L B,Yu Z Z,et al.Image retrieval using multi-granularity color features[C]//Proceedings of International Conference on Audio,Language and Image Processing.Shanghai:IEEE,2008:1584-1589.
[6] Ma Y Y,Wang C,Xu J C.Image retrieval system based on color feature of granular computing[C]//Proceedings of the 2010 2nd International Workshop on Intelligent Systems and Applications.Wuhan:IEEE,2010:1-3.
[7] Fei X,Liu C S.Multi-granular method for retrieving Thangka images[C]//Proceedings of 2014 International Conference on Progress in Informatics and Computing(PIC).Shanghai:IEEE,2014:46-50.
[8] Wang J Z,Li J,Wiederhold G.SIMPLIcity:Semantics-sensitive integrated matching for picture libraries[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2001,23(9):947-963
[9] Doherty P,Łukaszewicz W,Szałas A.Tolerance spaces and approximative representational structures[M]//Günter A,Kruse R,Neumann B.KI 2003:Advances in Artificial Intelligence.Berlin,Heidelberg:Springer,2003:475-489.
[10] 孟 军.相容粒计算模型及其数据挖掘研究[D].大连:大连理工大学,2012.
Meng J.Tolerance Granular Computing Model and Its Research on Data Mining[D].Dalian:Dalian University of Technology,2012.
[11] 郑 征.相容粒度空间模型及其应用研究[D].北京:中国科学院研究生院(计算技术研究所),2006.
Zheng Z.Tolerance Granular Space and Its Applications[D].Beijing:Chinese Academy of Science(Institute of Computing Technology),2006.
[12] 刘 韬,李向军,邱桃荣,等.一种基于相容粒计算模型的文章相似度计算方法[J].广西师范大学学报(自然科学版),2010,28(3):135-139.
Liu T,Li X J,Qiu T R.An approach to computing similarity degree between Chinese articles based on tolerance granular computing model[J].Journal of Guangxi Normal University(Natural Science Edition),2010,28(3):135-139.
[13] Li Y K,Bretschneider T R.Semantic-sensitive satellite image retrieval[J].IEEE Transactions on Geoscience and Remote Sensing,2007,45(4):853-860.
[1] YAO Kun, ZHANG Cunjie, HE Lei, LI Yuxia, LI Xiaoju. Dynamic evaluation and prediction of ecological environment vulnerability in the middle-upper reaches of the Yalong River[J]. Remote Sensing for Land & Resources, 2020, 32(4): 199-208.
[2] JIANG Lei, HAN Weizheng, SUN Lina. A study on regional ecological barrier construction based on landscape ecological risk[J]. Remote Sensing for Land & Resources, 2020, 32(4): 219-226.
[3] Chao MA, Panli CAI. Spatio-temporal changes and driving factors of environmental and ecological index in Culai-Lianhua area[J]. Remote Sensing for Land & Resources, 2019, 31(4): 199-208.
[4] Xinran ZHU, Bo WU, Qiang ZHANG. An improved CVAPS method for automatic updating of LUCC classification[J]. Remote Sensing for Land & Resources, 2018, 30(2): 29-37.
[5] Jiemei TIAN, Jie CHEN. Simulation and prediction of land use in the High Standard Grain Area of Hebi City[J]. Remote Sensing for Land & Resources, 2018, 30(1): 150-156.
[6] FANG Guohua, ZHOU Lei, WEN Xin, XUE Liuyu, YAN Chunhua. Land use change and ecological security evaluation of Jiangsu Province in the eastern route of the South-to-North Water Transfer Project[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(3): 163-170.
[7] LIU Meng, YANG Wunian, SHAO Huaiyong, SUN Xiaofei. Remote sensing dynamic monitoring and driving force analysis of land use/cover changes in Qingchuan County[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(3): 160-165.
[8] CHEN Ailing, DU Jinkang. Simulation and forecast of land cover pattern in Qinhuai River Basin based on the CA-Markov model[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(2): 184-189.
[9] DU Peijun, CHEN Yu, TAN Kun. The remote sensing monitoring of land use/cover change and land surface temperature responses over the coastal wetland in Jiangsu[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(2): 112-120.
[10] DU Peijun, CHEN Yu, TAN Kun. Monitoring and analyzing wetland landscape pattern change and ecological security using remote sensing images:A case study of Jiangsu coastal wetland[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(1): 158-166.
[11] YU Jijin, CHEN Xueling, CHEN Shaojie. Urban landscape ecological security assessment based on remote sensing and PSR model: A case study in Longyan City, Fujian Province[J]. REMOTE SENSING FOR LAND & RESOURCES, 2013, 25(1): 143-149.
[12] HAO Hui-mei, HAO Yong-li, TIAN Dang-sheng. Dynamic Evaluating Regional Land-cover Changes and Associated Ecosystem's Service Value Based on RS and GIS[J]. REMOTE SENSING FOR LAND & RESOURCES, 2011, 23(4): 115-120.
[13] NI Zhong-Yun, HE Zheng-Wei, ZHAO Yin-Bing, WANG Le, GAO Hui, CAI Ke-Ke. The Information Extraction Method for Land Use and Cover Change (LUCC)
after the Earthquake in Dujiang Dam
[J]. REMOTE SENSING FOR LAND & RESOURCES, 2010, 22(1): 73-76.
[14] WEN Qing-Ke, ZHANG Zeng-Xiang, LIU Bin, XU Jin-Yong, QIAO Zhu-Ping. INFORMATION EXTRACTION OF THE FAST-GROWING PLANTATION AREA BASED ON CBERS SATELLITE IMAGES[J]. REMOTE SENSING FOR LAND & RESOURCES, 2009, 21(4): 68-71.
[15] Gan Fuping, Wang Runsheng, Wang Yongjiang, Fu Zhengwen. THE CLASSIFICATION METHOD BASED ON REMOTE SENSING TECHNIQUES FOR LAND USE AND COVER[J]. REMOTE SENSING FOR LAND & RESOURCES, 1999, 11(4): 40-45.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech