|
|
|
|
|
|
Hyperspectral image classification via recursive filtering and KNN |
Bing TU1,2,3, Xiaofei ZHANG1,3, Guoyun ZHANG1,2,3, Jinping WANG1,3, Yao ZHOU1,3 |
1.School of Information and Communication Engineering, Hunan Institute of Science and Technology, Yueyang 414006,China 2.Key Laboratory of Optimization and Control for Complex Systems of Hunan Province, Hunan Institute of Science and Technology, Yueyang 414006, China 3.Laboratory of Intelligent-Image Information Processing, Hunan Institute of Science and Technology, Yueyang 414006, China |
|
|
Abstract In order to remove the noise in the hyperspectral image effectively, strengthen the spatial structure, make full use of the spatial context information of the object, and improve the classification accuracy of hyperspectral image, the authors put forward recursive filtering and k-nearest neighbor (KNN) method for hyperspectral image classification. The main steps are as follows: Firstly, the principal component analysis (PCA) is used to perform feature dimension reduction of hyperspectral images. Next, the recursive filtering is used to filter the principal component image. Then, the Euclidean distance between the test sample and the different training samples is calculated by the KNN algorithm. Finally, according to the comparison of average values of k minimum Euclidean distances, the classification of test samples is achieved. Experimental results are based on several real-world hyperspectral data sets, and the influence of different parameters on the classification accuracy is analyzed. Experimental results show that, with recursive filtering, the noise can be effectively removed, and the image outline can be strengthened. Compared with other hyperspectral image classification methods, the proposed method is outstanding in classification accuracy.
|
Keywords
hyperspectral images
recursive filtering
k-nearest neighbor
principal component analysis
Euclidean distance
|
|
Issue Date: 15 March 2019
|
|
|
[1] |
王跃明, 郎均慰, 王建宇 . 航天高光谱成像技术研究现状及展望[J]. 激光与光电子学进展, 2013,50(1):75-82.
doi: 10.3788/LOP50.010008
url: http://www.cnki.com.cn/Article/CJFDTotal-JGDJ201301009.htm
|
[1] |
Wang Y M, Lang J W, Wang J Y . Status and prospect of space-borne hyperspectral imaging technology[J]. Laser and Optoelectronics Progress, 2013,50(1):75-82.
|
[2] |
Manolakis D, Shaw G . Detection algorithms for hyperspectral imaging applications[J]. IEEE Signal Processing Magazine, 2002,19(1):29-43.
doi: 10.1109/79.974724
url: http://ieeexplore.ieee.org/document/974724/
|
[3] |
Bioucas-Dias J M, Plaza A, Camps-Valls G , et al. Hyperspectral remote sensing data analysis and future challenges[J]. IEEE Geoscience and Remote Sensing Magazine, 2013,1(2):6-36.
doi: 10.1109/MGRS.2013.2244672
url: http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=6555921
|
[4] |
李庆亭, 张连蓬, 杨锋杰 , 等. 高光谱遥感图像最大似然分类问题及解决方法[J]. 山东科技大学学报(自然科学版), 2005,24(3):61-64.
doi: 10.3969/j.issn.1672-3767.2005.03.017
url: http://www.cnki.com.cn/Article/CJFDTotal-SDKY200503016.htm
|
[4] |
Li Q T, Zhang L P, Yang F J , et al. The MLC’s problem in classification of hyperspectral RS image and its solving method[J]. Journal of Shandong University of Science (Natural Science Edition), 2005,24(3):61-64.
|
[5] |
Melgani F, Bruzzone L . Classification of hyperspectral remote sensing images with support vector machines[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004,42(8):1778-1790.
doi: 10.1109/TGRS.2004.831865
url: http://ieeexplore.ieee.org/document/1323134/
|
[6] |
Fauvel M, Tarabalka Y, Benediktsson J A , et al. Advances in spectral-spatial classification of hyperspectral images[J]. Proceedings of the IEEE Transactions on Geoscience and Remote Sensing, 2013,101(3):652-675.
doi: 10.1109/JPROC.2012.2197589
url: http://ieeexplore.ieee.org/document/6297992
|
[7] |
王春瑶, 陈俊周, 李炜 . 超像素分割算法研究综述[J]. 计算机应用研究, 2014,31(1):6-12.
doi: 10.3969/j.issn.1001-3695.2014.01.002
url: http://www.cqvip.com/QK/93231X/201401/48243238.html
|
[7] |
Wang C Y, Chen J Z, Li W . Review on superpixel segmentation algorithms[J]. Application Research of Computers, 2014,31(1):6-12.
|
[8] |
彭海涛, 柯长青 . 基于多层分割的面向对象遥感影像分类方法研究[J]. 遥感技术与应用, 2010,25(1):149-154.
url: http://d.wanfangdata.com.cn/Periodical/ygjsyyy201001024
|
[8] |
Peng H T, Ke C Q . Study on object-oriented remote sensing image classification based on multi-levels segmentation[J]. Remote Sensing Technology and Application, 2010,25(1):149-154.
|
[9] |
Vincent L, Soille P . Watersheds in digital spaces:An efficient algorithm based on immersion simulations[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1991,13(6):583-598.
doi: 10.1109/34.87344
url: http://ieeexplore.ieee.org/document/87344/
|
[10] |
王亚静, 王正勇, 滕奇志 , 等. 基于熵率超像素和区域合并的岩屑颗粒图像分割[J].计算机工程与设计, 2014(12):4223-4227.
doi: 10.3969/j.issn.1000-7024.2014.12.032
url: http://d.wanfangdata.com.cn/Periodical/jsjgcysj201412032
|
[10] |
Wang Y J, Wang Z Y, Teng Q Z , et al. Image segmentation of cutting grains based on entropy rate superpixel and region merging[J].Computer Engineering and Design, 2014(12):4223-4227.
|
[11] |
李旭超, 朱善安 . 图像分割中的马尔可夫随机场方法综述[J]. 中国图象图形学报, 2007,12(5):789-798.
doi: 10.3969/j.issn.1006-8961.2007.05.004
url: http://d.wanfangdata.com.cn/Periodical/zgtxtxxb-a200705004
|
[11] |
Li X C, Zhu S A . A survey of the Markov random field method for image segmentation[J]. Journal of Image and Graphics, 2007,12(5):789-798.
|
[12] |
Tarabalka Y Chanussot J, Benediktsson J A . Segmentation and classification of hyperspectral images using minimum spanning forest grown from automatically selected markers[J]. IEEE Transactions on Systems,Man,and Cybernetics.Part B,Cybernetics:A Publication of the IEEE Systems,Man,and Cybernetics Society, 2010,40(5):1267-1279.
doi: 10.1109/TSMCB.2009.2037132
pmid: 20051346
url: http://ieeexplore.ieee.org/document/5371866/
|
[13] |
马秀丹, 吴子宾 . 一种优化的高光谱图像特征提取方法[J].河南科技, 2016(9):29-30.
doi: 10.3969/j.issn.1003-5168.2016.09.008
url: http://d.wanfangdata.com.cn/Periodical/hnkj201609008
|
[13] |
Ma X D, Wu Z B . An optimization feature extraction method of hyperspectral images[J].Journal of Henan Science and Technology, 2016(9):29-30.
|
[14] |
朱勇, 吴波 . 多相似测度稀疏表示的高光谱影像分类[J]. 遥感信息, 2016,31(4):9-15.
doi: 10.3969/j.issn.1000-3177.2016.04.002
url: http://www.cnki.com.cn/Article/CJFDTotal-YGXX201604002.htm
|
[14] |
Zhu Y, Wu B . Sparse representation classification of hyperspectral image based on similarity indices[J]. Remote Sensing Information, 2016,31(4):9-15.
|
[15] |
程志会, 谢福鼎 . 基于空间特征与纹理信息的高光谱图像半监督分类[J].测绘通报, 2016(12):56-59,73.
doi: 10.13474/j.cnki.11-2246.2016.0401
url: http://www.cqvip.com/QK/93318X/201612/670895035.html
|
[15] |
Cheng Z H, Xie F D . Semi-supervised classification for hyperspectral image based on spatial features and texture information[J].Bulletin of Surveying and Mapping, 2016(12):56-59,73.
|
[16] |
张朝阳, 冯伍法, 张俊华 , 等. 基于形态学色差的彩色遥感影像水域提取[J]. 海洋测绘, 2006,26(5):58-60.
doi: 10.3969/j.issn.1671-3044.2006.05.018
url: http://d.wanfangdata.com.cn/Periodical/hych200605018
|
[16] |
Zhang Z Y, Feng W F, Zhang J H , et al. The waters feature extraction from the RS color image based on the morphological chromatic aberration[J]. Hydrographic Surveying and Charting, 2006,26(5):58-60.
|
[17] |
Camps-Valls G, Gomez-Chova L, Munoz-Mari J , et al. Composite kernels for hyperspectral image classification[J]. IEEE Geoscience and Remote Sensing Letters, 2006,3(1):93-97.
doi: 10.1109/LGRS.2005.857031
url: http://ieeexplore.ieee.org/document/1576697/
|
[18] |
Zhang L F, Zhang L P, Tao D C , et al. On combining multiple features for hyperspectral remote sensing image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012,50(3):879-893.
doi: 10.1109/tgrs.2011.2162339
url: http://ieeexplore.ieee.org/document/5997309/
|
[19] |
Kang X D, Li S T, Benediktsson J A . Feature extraction of hyperspectral images with image fusion and recursive filtering[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014,52(6):3742-3752.
doi: 10.1109/TGRS.2013.2275613
url: http://ieeexplore.ieee.org/document/6600779/
|
[20] |
Wang Z W, Yang J C, Nasrabadi N, et al. A max-margin perspective on sparse representation-based classification [C]//IEEE International Conference on Computer Vision.Sydney:IEEE, 2013: 1217-1224.
|
[21] |
Chen Y, Nasrabadi N M, Tran T D . Hyperspectral image classification using dictionary-based sparse representation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011,49(10):3973-3985.
doi: 10.1109/TGRS.2011.2129595
url: http://ieeexplore.ieee.org/document/5766028/
|
[22] |
Benediktsson J A, Palmason J A, Sveinsson J R . Classification of hyperspectral data from urban areas based on extended morphological profiles[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005,43(3):480-491.
doi: 10.1109/TGRS.2004.842478
url: http://ieeexplore.ieee.org/document/1396321/
|
[23] |
Kang X D, Li S T, Benediktsson J A . Spectral-spatial hyperspectral image classification with edge-preserving filtering[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014,52(5):2666-2677.
doi: 10.1109/TGRS.2013.2264508
url: http://ieeexplore.ieee.org/document/6553593/
|
[24] |
Li J ,Bioucas-Dias J M,Plaza A.Hyperspectral image segmentation using a new Bayesian approach with active learning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011,49(10):3947-3960.
doi: 10.1109/TGRS.2011.2128330
url: http://ieeexplore.ieee.org/document/5766734/
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|