Please wait a minute...
 
Remote Sensing for Land & Resources    2020, Vol. 32 Issue (4) : 209-218     DOI: 10.6046/gtzyyg.2020.04.26
|
Urban ecological environment evaluation based on Tiangong-2 and Landsat8 data
MUHADAISI Ariken1,2(), ZHANG Fei1,2,3(), LIU Kang4, AYINUER Yushanjiang1,2
1. Key Laboratory of Wisdom City and Environment Modeling of Higher Education Institute, College of Resources and Environmental Science, Xinjiang University, Urumqi 830046, China
2. Key Laboratory of Oasis Ecology, Xinjiang University, Urumqi 830046, China
3. Engineering Research Center of Central Asia Geoinformation Development and Utilization, National Administration of Surveying, Mapping and Geoinformation, Urumqi 830002, China
4. Technology and Engineering Center for Space Utilization, Key Laboratory of Space Utilization, Chinese Academy of Sciences, Beijing 100094, China
Download: PDF(4680 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

At present, China has entered into the rapid development stage of urbanization, and urbanization is exerting its positive effect. Such a situation inevitably brings negative effects, but remote sensing technique can quickly, accurately, objectively and quantitatively reveal the present situation of the regional ecological environment quality. Bohu County is one of the most typical areas in arid oasis in Northwest China. Based on Tiangong-2 wide-band images spectrometer and Landsat8 images, the authors constructed a multi-factor comprehensive index RSEI evaluation model in combination with principal components, which was established to evaluate the ecological environment of Bohu County. Additionally, the authors explored the application of Tiangong-2 wide-band images to ecological environment monitoring. The result shows that the greenness (NDVI) and wetness (WET) have positive effects on promoting the ecological environment quality, while the heat (LST) and dryness (NDBI) have restraining effects on ecological environment quality. Greenness (NDVI) has a greater impact on the ecological environment than the other three indicators. In 2018, the RSEI poor grade (0 ~ 0.2) in Bohu County was mainly distributed over urban land and unused land in the north;the fair grade (0.2 ~ 0.4) was mainly distributed among mountains and sandy land. Quantitative and qualitative analysis shows that the driving factors included urban economic development, higher average temperature, greater evaporation, longer sunshine and other natural factors. The ecological environment of wetland and cultivated land was between good (0.6 ~ 0.8) and excellent (0.8 ~ 1.0), indicating that the ecological environment quality of this region was good. According to the spatial differentiation characteristics of ecological and environmental quality, the ecological and environmental quality of the research area in 2018 had a strong positive correlation and certain internal relations, and tended to cluster. This study offers important results and information for planning of regional ecological environment protection and development.

Keywords Tiangong-2 WIS      principal component analysis      RSEI      urbanization     
:  TP79  
Corresponding Authors: ZHANG Fei     E-mail: 18240988292@163.com;zhangfei3s@163.com
Issue Date: 23 December 2020
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Ariken MUHADAISI
Fei ZHANG
Kang LIU
Yushanjiang AYINUER
Cite this article:   
Ariken MUHADAISI,Fei ZHANG,Kang LIU, et al. Urban ecological environment evaluation based on Tiangong-2 and Landsat8 data[J]. Remote Sensing for Land & Resources, 2020, 32(4): 209-218.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2020.04.26     OR     https://www.gtzyyg.com/EN/Y2020/V32/I4/209
Fig.1  Location of study area
波段 可见近红外谱段 短波红
外谱段
热红外
谱段
通道范围/μm V1: 0.970~0.990 V8: 0.655~0.675 S1: 1.230~
1.250
T1: 8.125~
8.825
V2: 0.930~0.950 V9: 0.610~0.630 S2: 1.630~
1.650
T2: 8.925~
9.275
V3: 0.895~0.915 V10: 0.555~0.575
V4: 0.845~0.885 V11: 0.510~0.530
V5: 0.810~0.830 V12: 0.480~0.500
V6: 0.740~0.760 V13: 0.433~0.453
V7: 0.6775~0.6875 V14: 0.403~0.423
空间分辨率/m 100 200 400
Tab.1  Wide band imager index of Tiangong-2
Fig.2  RSEI flow chart of calculation
年份 指标 PC1 PC2 PC3 PC4
2018年 绿度(NDVI) 0.936 0.174 0.025 0.306
干度(NDBI) -0.828 0.218 0.503 0.117
湿度(WET) 0.737 0.608 0.216 -0.200
热度(LST) -0.642 0.671 -0.365 -0.064
特征值 2.517 0.898 0.434 0.151
贡献率/% 62.922 22.455 10.839 3.785
Tab.2  Result of PCAs
指标 绿度
(NDVI)
湿度
(WET)
干度
(NDBI)
热度
(LST)
RSEI
绿度
(NDVI)
1.000 0.783**① -0.723** -0.669** 0.935**
湿度
(WET)
0.783** 1.000 -0.747** -0.667** 0.842**
干度
(NDBI)
-0.723** -0.747** 1.000 0.52** -0.858**
热度
(LST)
-0.669** -0.667** 0.52** 1.000 -0.683**
RSEI 0.935** 0.842** -0.858** -0.683** 1.000
Tab.3  Correlation analysis of RSEI and four indicators
指标 均值 标准差
绿度(NDVI) 0.574 0.148
干度(NDBI) 0.365 0.117
湿度(WET) 0.423 0.028
热度(LST) 0.779 0.084
RSEI 0.393 0.291
Tab.4  Statistical value of RSEI and indicators
RSEI等级 划分依据 面积/km2 比例/%
[0,0.2) 1 012.80 38.83
较差 [0.2,0.4) 616.22 23.62
[0.4,0.6) 158.19 6.06
[0.6,0.8) 415.36 15.92
[0.8,1.0] 405.79 15.56
Tab.5  Scale and proportion of ecological environment level in Bohu
Fig.3  LUCC and RSEI result grade diagram of Bohu in 2018
Fig.4  Moran scatter plots of the RSEI of Bohu in 2018
Fig.5  LISA cluster map and significance map
Fig.6  3D-scatter plots of feature space
气象指标 1月 2月 3月 4月 5月 6月 7月 8月 9月 10月 11月 12月 合计 年平均
平均气温/℃ -10.7 -5.3 8.3 14.1 18.2 22.9 23.9 22.9 16.3 8.8 0.1 -10.2 109.3 9.11
平均相对湿度/% 68 62 50 34 40 46 49 56 52 55 67 65 644 53.67
降水量/mm 0.8 0.1 5.6 0 25.2 4.7 1 15.4 1.9 14.3 0.2 0 69.2 5.77
蒸发量/mm 17.6 39.2 146 3 276.6 3 276.6 3 276.6 3 276.6 3 276.6 3 276.6 3 276.6 44.9 19.4 23 203.3 1 933.61
平均风速/(m.s-1) 1.4 1.5 2.2 2.8 3 2.4 2.3 2.1 2.1 1.8 1.7 1.6 24.9 2.08
日照时数/h 201 201.3 245.9 273.3 301.6 266.6 290.5 296.7 309.8 275.7 199.3 195.3 3057 254.75
Tab.6  Climate characteristic value of Bohu in 2018
Fig.7  Social and economic development of Bohu from 2014 to 2018
[1] Jacobson C R. Identifification and quantifification of the hydrological impacts of imperviousness in urban catchments:A review[J]. Journal of Environmental Manage-Ment, 2011,92(6):1438-1448.
[2] 中华人民共和国国家统计局. 中国统计年鉴[M]. 北京: 中国统计出版社, 2017.
[2] National Bureau of Statistics of the People’s Republic of China. China statistical yearbook[M]. Beijing: China Statistics Press, 2017.
[3] Tao Y, Li F, John C, et al. Measuring urban environmental sustainability performance in China:A multi-scale comparison among different cities, urban clusters,and geographic regions[J]. Cities, 2019,94:200-210.
[4] 徐涵秋. 区域生态环境变化的遥感评价指数[J]. 中国环境科学, 2013,33(5):889-897.
[4] Xu H Q. A remote sensing index for assessment of regional ecological changes[J]. China Environmental Science, 2013,33(5):889-897.
[5] 张洪敏, 张艳芳, 田茂, 等. 基于主成分分析的生态变化遥感监测——以宝鸡市城区为例[J]. 国土资源遥感, 2018,30(1):203-209.doi: 10.6046/gtzyyg.2018.01.28.
[5] Zhang H M, Zhang Y F, Tian M, et al. Dynamic monitoring of eco-environment quality changes based on PCA:A case study of urban area of Baoji City[J]. Remote Sensing for Land and Resources, 2018,30(1):203-209.doi: 10.6046/gtzyyg.2018.01.28.
[6] 单薇, 金晓斌, 孟宪素, 等. 基于多源遥感数据的土地整治生态环境质量动态监测[J]. 农业工程学报, 2019,35(1):234-242.
[6] Shan W, Jin X B, Meng X S, et al. Dynamical monitoring of ecological environment quality of land consolidation based on multi-source remote sensing data[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019,35(1):234-242.
[7] 徐志刚, 郑鸿瑞, 戴晨曦, 等. 永定客家土楼世界遗产地土地覆盖与生态变化遥感评价[J]. 国土资源遥感, 2018,30(1):102-108.doi: 10.6046/gtzyyg.2018.01.14.
[7] Xu Z G, Zheng H R, Dai C X, et al. Evaluation of land cover and ecological change of Yongding Hakka Tulou World Heritage Protection Area using remote sensing image[J]. Remote Semsing for Land and Resources, 2018,30(1):102-108.doi: 10.6046/gtzyyg.2018.01.14.
[8] 罗春, 刘辉, 戚陆越. 基于遥感指数的生态变化评估——以常宁市为例[J]. 国土资源遥感, 2014,26(4):145-150.doi: 10.6046/gtzyyg.2014.04.23.
doi: 10.6046/gtzyyg.2014.04.23 url: http://www.gtzyyg.com/CN/abstract/abstract1812.shtml
[8] Luo C, Liu H, Qi L Y. Ecological changes assessment based on remote sensing indices:A case study of Changning City[J]. Remote Sensing for Land and Resources, 2014: 26(4):145-150.doi: 10.6046/gtzyyg.2014.04.23.
[9] Tang Y, Wei J, Huang X, et al. Research on on-board calibration system of Tiangong-2 wide-band imaging spectrometer[C]// Gu Y,Gao M,Zhao G.Proceedings of the Tiangong-2 Remote Sensing Application Conference.Lecture Notes in Electrical Engineering, 2019:28-39.
[10] 石满, 陈健, 覃帮勇, 等. 天宫二号数据地表温度反演及其在城市群热环境监测中的应用[J]. 遥感技术与应用, 2018,33(5):811-819.
[10] Shi M, Chen J, Qin B Y, et al. Inversion of land surface temperature and its application in urban agglomeration thermal environment monitoring based on Tiangong-2 data[J]. Remote Sensing Technology and Application, 2018,33(5):811-819.
[11] 孙明, 钟仕全, 谢敏, 等. 天宫二号对地观测数据在生态评价中的应用研究[J]. 气象研究与应用, 2018,39(4):40-43.
[11] Sun M, Zhong S Q, Xie M, et al. Application of earth observation data of Tiangong2 in ecological assessment[J]. Journal of Meteorological Research and Application, 2018,39(4):40-43.
[12] Peng S, Xi X, Wang C. Land use change monitoring in Angkor wat based on Tiangong-2 wide band imaging data[C]// Gu Y,Gao M,Zhao G.Proceedings of the Tiangong-2 Remote Sensing Application Conference.Lecture Notes in Electrical Engineering, 2019:254-263.
[13] Mu L, Li S, Qin B, et al. Drought monitoring using Tiangong-2 wide-band spectrometer data[C]// Gu Y,Gao M,Zhao G.Proceedings of the Tiangong-2 Remote Sensing Application Conference.Lecture Notes in Electrical Engineering, 2019:277-285.
[14] Cong P, Chen K, Qu L, et al. Temporal and spatial changes of the Yellow River delta wetland based on multi-source data during 30 years[C]// Gu Y,Gao M,Zhao G.Proceedings of the Tiangong-2 Remote Sensing Application Conference.Lecture Notes in Electrical Engineering, 2019:286-299.
[15] 王凤英. 博湖县主要农业气象灾害及防灾减灾服务对策[J]. 农业灾害研究, 2019,9(1):80-81.
[15] Wang F Y. Main agro-meteorological disasters in Bohu County and the disaster prevention and reduction coun-termeasures[J]. Journal of Agricultural Catastrophology, 2019,9(1):80-81.
[16] 刘康, 覃帮勇, 牟伶俐, 等. 基于多时相遥感影像的围填海动态监测与变化分析——以辽宁省部分沿海县市为例[J]. 海洋环境科学, 2017,36(6):911-917.
[16] Liu K, Qin B Y, Mu L L, et al. Monitoring and analysing of reclamation change based on multi-data remote sensing images:A case study of partial area of Liaoning Province[J]. Marine Environmental Science, 2017,36(6):911-917.
[17] 刘康, 任海根, 李盛阳, 等. 基于天宫二号多光谱数据的青藏高原冻湖自动提取[J]. 红外与激光工程, 2019,48(3):32-38.
[17] Liu K, Ren H G, Li S Y, et al. Automatic extraction of Tibet Plateau frozen lake based on Tiangong-2 multi-spectral data[J]. Infrared and Laser Engineering, 2019,48(3):32-38.
[18] Xu H Q, Wang M Y, Shi T T, et al. Prediction of ecological effects of potential population and impervious surface increases using a remote sensing based ecological index (RSEI)[J]. Ecological Indicators, 2018,93(11):730-740.
[19] Seddon A W, Macias-Fauria M, Long P R, et al. Sensitivity of global terrestrial ecosystems to climate variability[J]. Nature, 2016,531(7593):229-232.
pmid: 26886790 url: https://www.ncbi.nlm.nih.gov/pubmed/26886790
[20] Luo R, Zhou J, Yang J, et al. Downscaling of Tiangong-2 land surface temperature[C]// Gu Y,Gao M,Zhao G.Proceedings of the Tiangong-2 Remote Sensing Application Conference.Lecture Notes in Electrical Engineering, 2019:170-179.
[21] Zawadzki J, Przezdziecki K, Miatkowski Z. Determining the area of influence of depression cone in the vicinity of lignite mine by means of triangle method and Landsat TM/ETM+ satellite images[J]. Journal of Environmental Management, 2016,166:605-614.
doi: 10.1016/j.jenvman.2015.11.010 pmid: 26610610 url: https://www.ncbi.nlm.nih.gov/pubmed/26610610
[22] Wei W, Guo Z, Xie B, et al. Spatiotemporal evolution of environment based on integrated remote sensing indexes in arid inland river basin in Northwest China[J]. Environmental Science and Pollution Research, 2019,26:13062-13084.
doi: 10.1007/s11356-019-04741-x pmid: 30891703 url: https://www.ncbi.nlm.nih.gov/pubmed/30891703
[23] Estoque R C, Murayama Y, Myint S W. Effects of landscape composition and pattern on land surface temperature:An urban heat island study in the megacities of Southeast Asia[J]. Science of the Total Environment, 2017,577:349-359.
[24] 徐涵秋. 水土流失区生态变化的遥感评估[J]. 农业工程学报, 2013,29(7):91-97.
[24] Xu H Q. Assessment of ecological change in soil loss area using remote sensing technology[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013,29(7):91-97.
[25] 徐涵秋. 城市遥感生态指数的创建及其应用[J]. 生态学报, 2013,33(24):7853-7862.
[25] Xu H Q. A remote sensing urban ecological index and its application[J]. Acta Ecologica Sinica, 2013,33(24):7853-7862.
[26] 江振蓝, 龚振彬, 潘辉, 等. 空间自相关局部指标在城市热岛界定中的应用[J]. 国土资源遥感, 2018,30(3):136-142.doi: 10.6046/gtzyyg.2018.03.19.
[26] Jiang Z L, Gong Z B, Pan H, et al. Application of local spatial autocorrelation indices to the delimitation of urban heat island[J]. Remote Sensing for Land and Resources, 2018,30(3):136-142.doi: 10.6046/gtzyyg.2018.03.19.
[27] 巩杰, 谢余初, 赵彩霞, 等. 甘肃白龙江流域景观生态风险评价及其时空分异[J]. 中国环境科学, 2014,34(8):2153-2160.
url: http://118.145.16.227/Jweb_zghjkx/CN/abstract/abstract13781.shtml
[27] Gong J, Xie Y C, Zhao C X, et al. Landscape ecological risk assessment and its spatio temporal variation of the Bailongjiang watershed,Gansu[J]. China Environmental Science, 2014,34(8):2153-2160.
[28] 约日古丽卡斯木, 孜比布拉·司马义, 王蕾, 等. 新疆博乐市生态环境变化对城市建设用地扩张的响应[J]. 农业工程学报, 2019,35(1):252-259.
[28] Yueriguli K, Zibibula S, Wang L, et al. Response of ecological environment change to urban construction land expansion in Bole City of Xinjiang[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019,35(1):252-259.
url: http://www.tcsae.org/nygcxb/ch/reader/view_abstract.aspx?file_no=20190131&flag=1
[29] 王丽春, 焦黎, 来风兵, 等. 新疆精河县生态变化评价及驱动力研究[J]. 生态与农村环境学报, 2019,35(3):316-323.
[29] Wang L C, Jiao L, Lai F B, et al. Study on evaluation and driving forces of ecological changes in Jinghe County,Xinjiang[J]. Journal of Ecology and Rural Environment, 2019,35(3):316-323.
[30] 方创琳, 高倩, 张小雷, 等. 城市群扩展的时空演化特征及对生态环境的影响——以天山北坡城市群为例[J]. 中国科学(地球科学), 2019,49(9):1413-1424
[30] Fang C L, Gao Q, Zhang X L, et al. Spatiotemporal characteristics of the expansion of an urban agglomeration and its effect on the eco-environment:Case study on the northern slope of the Tianshan Mountains[J]. Science China Earth Sciences, 2019,49(9):1413-1424.
[1] QIN Dahui, YANG Ling, CHEN Lunchao, DUAN Yunfei, JIA Hongliang, LI Zhenpei, MA Jianqin. A study on the characteristics and model of drought in Xinjiang based on multi-source data[J]. Remote Sensing for Natural Resources, 2022, 34(1): 151-157.
[2] ZHANG Qinrui, ZHAO Liangjun, LIN Guojun, WAN Honglin. Ecological environment assessment of three-river confluence in Yibin City using improved remote sensing ecological index[J]. Remote Sensing for Natural Resources, 2022, 34(1): 230-237.
[3] MENG Dan, LIU Lingtong, GONG Huili, LI Xiaojuan, JIANG Bowu. Coupling and coordination relationships between urbanization and ecological environment along the Beijing-Hangzhou Grand Canal[J]. Remote Sensing for Natural Resources, 2021, 33(4): 162-172.
[4] WEI Yingjuan, LIU Huan. Remote sensing-based mineralized alteration information extraction and prospecting prediction of the Beiya gold deposit, Yunnan Province[J]. Remote Sensing for Natural Resources, 2021, 33(3): 156-163.
[5] CHEN Zhen, XIA Xueqi, CHEN Jianping. A study of remote sensing evaluation model and main controlling factors of land ecological quality:A case study of Guang’an City[J]. Remote Sensing for Land & Resources, 2021, 33(1): 191-198.
[6] WANG Xiaolong, YAN Haowen, ZHOU Liang, ZHANG Liming, DANG Xuewei. Using SVM classify Landsat image to analyze the spatial and temporal characteristics of main urban expansion analysis in Democratic People’s Republic of Korea[J]. Remote Sensing for Land & Resources, 2020, 32(4): 163-171.
[7] LIU Hui, QI Zengxiang, HUANG Fuqiang. Spatio-temporal difference and correlation of urbanization with avian habitats in Dongting Lake area[J]. Remote Sensing for Land & Resources, 2020, 32(3): 191-199.
[8] Jiaqi ZUO, Zegen WANG, Jinhu BIAN, Ainong LI, Guangbin LEI, Zhengjian ZHANG. A review of research on remote sensing for ground impervious surface percentage retrieval[J]. Remote Sensing for Land & Resources, 2019, 31(3): 20-28.
[9] Benzuo YAO, Fang HE. Spatial and spectral feature hierarchical fusion for hyperspectral image feature extraction[J]. Remote Sensing for Land & Resources, 2019, 31(3): 59-64.
[10] Lixin DONG. Multi-model estimation of forest leaf area index in the Three Gorges Reservoir area[J]. Remote Sensing for Land & Resources, 2019, 31(2): 73-81.
[11] Bing TU, Xiaofei ZHANG, Guoyun ZHANG, Jinping WANG, Yao ZHOU. Hyperspectral image classification via recursive filtering and KNN[J]. Remote Sensing for Land & Resources, 2019, 31(1): 22-32.
[12] Lingyu YIN, Xianlin QIN, Guifen SUN, Shuchao LIU, Xiaofeng ZU, Xiaozhong CHEN. The method for detecting forest cover change in GF-1images by using KPCA[J]. Remote Sensing for Land & Resources, 2018, 30(1): 95-101.
[13] Zhigang XU, Hongrui ZHENG, Chenxi DAI, Peng GAO, Peijun DU. Evaluation of land cover and ecological change of Yongding Hakka Tulou World Heritage Protection Area using remote sensing image[J]. Remote Sensing for Land & Resources, 2018, 30(1): 102-108.
[14] Hongmin ZHANG, Yanfang ZHANG, Mao TIAN, Chunling WU. Dynamic monitoring of eco-environment quality changes based on PCA:A case study of urban area of Baoji City[J]. Remote Sensing for Land & Resources, 2018, 30(1): 203-209.
[15] ZHANG Qianning, TAN Shiteng, XU Zhu, HUANG Zechun. Applicability and simplification study of patch level landscape metrics based on GLC30[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(4): 98-105.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech