Please wait a minute...
 
Remote Sensing for Land & Resources    2021, Vol. 33 Issue (1) : 191-198     DOI: 10.6046/gtzyyg.2020083
|
A study of remote sensing evaluation model and main controlling factors of land ecological quality:A case study of Guang’an City
CHEN Zhen(), XIA Xueqi, CHEN Jianping
School of Earth Sciences and Resources, China University of Geosciences (Beijing), Beijing 100083, China
Download: PDF(3993 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

In order to scientifically evaluate the ecological quality of the land and effectively identify the main controlling factors of the land ecology, the authors established a remote sensing evaluation model based on ideal points in Guang’an which served as a research area, evaluated the ecological quality of the land in Guang’an in 2000, 2005, 2010 and 2015, and analyzed the main controlling factors. A kilometer grid was used as the evaluation unit. The evaluation index system was constructed based on the fourteen evaluation criteria in the four criterion layers, i.e., ecological background, ecological structure, ecological benefits and ecological stress. The evaluation index system was constructed by applying Delphi method and entropy weight method. The weight value of each evaluation index and the ideal point values were calculated by using the ideal point model, and the ideal point level was divided. The principal factor analysis method was used to obtain the main control factors of each year, and then the relationship between the spatial distribution of the ideal point level and the environmental impact factor was performed. Through research, the authors obtained the overall upward trend of land ecological quality in Guang’an City. It is shown that the proportion of land ecological quality at various levels of area and spatial distribution and the proportion of forest land area and temperature factor are the most important main control factors, and the proportion of woodland and the temperature are positively related to the land ecological quality. After analysis, the suggestions on land ecological quality supervision in Guang’an City are put forward. which can provide references for land ecological quality supervision in other areas.

Keywords land ecological quality      ecological evaluation index      ideal point model      main controlling factor      principal component analysis     
ZTFLH:  TP79  
Issue Date: 18 March 2021
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Zhen CHEN
Xueqi XIA
Jianping CHEN
Cite this article:   
Zhen CHEN,Xueqi XIA,Jianping CHEN. A study of remote sensing evaluation model and main controlling factors of land ecological quality:A case study of Guang’an City[J]. Remote Sensing for Land & Resources, 2021, 33(1): 191-198.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2020083     OR     https://www.gtzyyg.com/EN/Y2021/V33/I1/191
Fig.1  Administrative map of Guang’an City
年份 森林 草地 水体 荒地 建设用地
2000年 79.07 6.68 2.55 9.75 1.95
2005年 82.99 0.26 3.56 11.43 1.76
2010年 79.33 8.65 2.75 6.42 2.85
2015年 85.79 4.44 4.39 1.84 3.54
Tab.1  Proportion of land use types in 2000, 2005, 2010 and 2015(%)
Fig.2  The land classification map of the study area in 2000, 2005, 2010 and 2015
准则层 评价指标
生态本底 年均降水量、年均气温、植被指数、GPP、地形
生态结构 林地占比、草地占比、水体占比、裸地占比、建设用地占比
生态效益 生态服务价值
生态胁迫 GDP、人口密度、夜间灯光
Tab.2  Remote sensing evaluation index system for land ecological quality
Fig.3  Grade map of ideal points in 2000, 2005, 2010 and 2015
生态等级 2000年 2005年 2010年 2015年
第1级 7.07 1.25 2.76 2.61
第2级 33.79 56.52 28.60 17.04
第3级 54.84 34.74 64.59 72.41
第4级 3.42 6.61 3.22 7.13
第5级 0.81 0.83 0.76 0.71
Tab.3  Proportion of evaluation units of each ecological level in 4 phases(%)
主控因子 第1主成分 第2主成分 第3主成分
地形(-) -0.308 07 -0.026 89 -0.342 47
人口(-) -0.520 77 -0.338 18 -0.716 06
GDP(-) -0.424 16 -0.243 47 -0.569 85
灯光(-) -0.329 16 -0.154 92 -0.482 63
气温(+) 0.595 20 0.562 66 0.544 18
NDVI(+) 0.433 00 0.306 73 -0.123 04
降水(+) 0.482 34 0.426 82 0.288 68
GPP(+) -0.844 80 -0.569 17 -1.084 96
林地占比(+) 2.955 60 -0.599 57 -0.172 50
草地占比(+) -0.600 23 0.175 69 -0.762 56
水体占比(+) -0.695 58 -1.952 64 2.563 03
荒地占比(+) -0.399 69 2.579 52 1.348 87
建筑用地占比(-) -0.343 67 -0.166 58 -0.490 69
Tab.4  Main control factors in 2000
主控因子 第1主成分 第2主成分 第3主成分
地形(-) 0.336 04 -0.333 25 1.884 00
人口(-) -0.336 63 -0.240 46 0.412 78
主控因子 第1主成分 第2主成分 第3主成分
GDP(-) 0.215 26 -0.319 19 1.442 95
灯光(-) -0.071 25 -0.289 97 0.836 87
气温(+) 2.581 45 -0.147 24 -0.860 66
NDVI(+) -0.394 08 -0.349 28 0.012 99
降水(+) 1.390 53 -0.139 22 -0.949 99
GPP(+) -0.883 23 -0.240 13 -1.551 93
林地占比(+) -0.211 71 0.464 05 0.333 61
草地占比(+) -0.862 01 -0.087 26 -0.959 10
水体占占比(+) -0.892 80 -0.247 32 -0.530 70
荒地占比(+) -0.100 58 3.297 76 0.220 05
建筑用地占比(-) -0.770 99 -0.263 21 -0.290 85
Tab.5  Main control factors in 2005
主控因子 第1主成分 第2主成分 第3主成分
地形(-) -0.315 20 -0.063 57 -0.386 22
人口(-) -0.521 95 -0.052 42 -0.896 30
GDP(-) -0.433 11 -0.07 549 -0.723 02
灯光(-) -0.295 67 -0.061 55 -0.671 06
气温(+) 0.585 50 -0.244 60 0.996 77
NDVI(+) 0.602 72 -0.446 48 0.634 94
降水(+) 0.491 46 -0.276 41 0.736 05
GPP(+) -0.849 94 0.093 58 -1.650 53
林地占比(+) 2.906 75 0.445 09 -0.69 235
草地占比(+) -0.503 90 -1.160 84 0.437 99
水体占比(+) -0.682 32 2.986 16 1.131 55
荒地占比(+) -0.614 83 -1.083 00 1.739 95
建筑用地占比(-) -0.369 50 -0.060 47 -0.657 77
Tab.6  Main control factors in 2010
主控因子 第1主成分 第2主成分 第3主成分
地形(-) -0.302 46 -0.247 35 0.037 47
人口(-) -0.443 68 -0.416 52 0.302 54
GDP(-) -0.378 95 -0.363 77 0.244 99
灯光(-) -0.268 11 -0.317 80 0.584 07
气温(+) 0.532 44 0.156 52 -1.461 93
NDVI(+) 0.513 35 -0.067 13 -0.423 64
降水(+) 0.493 81 0.029 23 -1.366 81
GPP(+) -0.804 23 -0.539 67 1.890 78
林地占比(+) 2.937 22 -0.105 74 0.921 57
草地占比(+) -0.719 98 -0.533 02 0.016 33
水体占比(+) -0.477 37 3.247 15 0.346 06
荒地占比(+) -0.764 16 -0.513 73 -1.589 99
建筑用地占比(-) -0.317 88 -0.328 19 0.498 56
Tab.7  Main control factors in 2015
年份 主控因子1 主控因子2 主控因子3
2000年 林地占比 荒地占比 水体占比
2005年 气温 荒地占比 地形
2010年 林地占比 水体占比 荒地占比
2015年 林地占比 水体占比 GPP
Tab.8  Main control factors in 2000, 2005, 2010 and 2015
[1] Pieri C, Dumanski J, Hamblin A, et al. Land quality indicators[J]. World Bank Discussion Papers, 1995,81(2):81.
[2] Messing I, Fagerström M, Chen L D, et al. Criteria for land suitability evaluation in a small catchment on the Loess Plateau in China[J]. Catena, 2003,51(12):215-234.
[3] 张军以, 苏维词, 张凤太. 基于PSR模型的三峡库区生态经济区土地生态安全评价[J]. 中国环境科学, 2011,31(6):1039-1044.
[3] Zhang J Y, Su W C, Zhang F T. Evaluation of land ecological security in the Three Gorges Reservoir ecological economic zone based on PSR model[J]. China Environmental Science, 2011,31(6):1039-1044.
[4] Paracchini M L, Pacini C, Jones M L M, et al. Aggregation framework to link indicators associated with multifunctional land use to the stakehode:Evaluation of options[J]. Ecological Indicators, 2011,1(1):71-80.
[5] 巩芳, 陈宝新. 基于DPSIR模型的草原生态补偿效果综合评价研究——以内蒙古为例[J]. 内蒙古农业大学学报(社会科学版), 2019,21(5):1-6.
[5] Gong F, Chen B X. Research on comprehensive evaluation of grassland ecological compensation based on DPSIR model:Taking Inner Mongolia as an example[J]. Journal of Inner Mongolia Agricultural University (Social Science Edition), 2019,21(5):1-6.
[6] 邹炎平, 朱达, 陈维国, 等. 基于DEA模型下中国各区域环境效率和生态无效效率评价[J]. 湖北大学学报(自然科学版), 2020,42(1):12-19,26.
[6] Zou Y P, Zhu D, Chen W G, et al. Evaluation of environmental efficiency and ecological inefficiency of various regions in China based on DEA model[J]. Journal of Hubei University (Natural Science Edition), 2020,42(1):12-19,26.
[7] 王毅, 魏江超, 孙启元, 等. 基于ARIMA-ANN模型的生态安全评价及预测——以河西走廊城市群为例[J]. 生态学杂志, 2020,39(1):326-336.
[7] Wang Y, Wei J C, Sun Q Y, et al. Evaluation and prediction of ecological security based on ARIMA-ANN model:Taking Hexi Corridor urban agglomeration as an example[J]. Journal of Ecology, 2020,39(1):326-336.
[8] 冯文斌, 李升峰. 江苏省土地生态安全评价研究[J]. 水土保持通报, 2013,33(2):285-290.
[8] Feng W B, Li S F. Research on evaluation of land ecological security in Jiangsu Province[J]. Bulletin of Soil and Water Conservation, 2013,33(2):285-290.
[9] 李玲, 侯淑涛, 赵悦, 等. 基于P-S-R模型的河南省土地生态安全评价及预测[J]. 水土保持研究, 2014,21(1):188-192.
[9] Li L, Hou S T, Zhao Y, et al. Evaluation and prediction of land ecological security in Henan Province based on P-S-R model[J]. Research of Soil and Water Conservation, 2014,21(1):188-192.
[10] 李迎迎, 杨朝现, 信桂新, 等. 土地生态安全动态变化研究[J]. 西南师范大学学报(自然科学版), 2014,39(11):189-195.
[10] Li Y Y, Yang C X, Xin G X, et al. Research on the dynamic changes of land ecological security[J]. Journal of Southwest China Normal University (Natural Science Edition), 2014,39(11):189-195.
[11] 卢立峰, 严力蛟. 县域土地生态安全评价——以四川省丹棱县为例[J]. 生态与农村环境学报, 2013,29(3):295-300.
[11] Lu L F, Yan L J. Evaluation of land ecological security in county areas:Taking Danling County,Sichuan Province as an example[J]. Journal of Ecology and Rural Environment, 2013,29(3):295-300.
[12] 戴靓, 姚新春, 周生路, 等. 长三角经济发达区金坛市土地生态状况评价[J]. 农业工程学报, 2013,29(8):249-257.
[12] Dai L, Yao X C, Zhou S L, et al. Evaluation of the ecological status of land in Jintan City,an economically developed area of the Yangtze River Delta[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013,29(8):249-257.
[13] 于勇, 周大迈, 王红, 等. 土地资源评价方法及评价因素权重的确定探析[J]. 中国生态农业学报, 2006(2):213-215.
[13] Yu Y, Zhou D M, Wang H, et al. Analysis of land resource evaluation method and determination of evaluation factor weight[J]. Chinese Journal of Eco-Agriculture, 2006(2):213-215.
[14] 郭岐峰, 王清礼, 蓝鸿第. 生态系统熵的初步研究[J]. 辽宁气象, 1992(4):9-10.
[14] Guo Q F, Wang Q L, Lan H D. Preliminary research on ecosystem entropy[J]. Liaoning Meteorology, 1992(4):9-10.
[15] 王清源, 潘旭海. 熵权法在重大危险源应急救援评估中的应用[J]. 南京工业大学学报(自然科学版), 2011,33(3):87-92.
[15] Wang Q Y, Pan X H. Application of entropy weight method in emergency rescue assessment of major hazard sources[J]. Journal of Nanjing University of Technology (Natural Science Edition), 2011,33(3):87-92.
[16] 黄辉玲, 罗文斌, 吴次芳, 等. 基于物元分析的土地生态安全评价[J]. 农业工程学报, 2010,26(3):316-322.
[16] Huang H L, Luo W B, Wu C F, et al. Evaluation of land ecological security based on matter element analysis[J]. Transactions of the Chinese Society of Agricultural Engineering, 2010,26(3):316-322.
[1] LIANG Jintao, CHEN Chao, ZHANG Zili, LIU Zhisong. A random forest-based method integrating indices and principal components for classifying remote sensing images[J]. Remote Sensing for Natural Resources, 2023, 35(3): 35-42.
[2] SUN Xiao, PENG Junhuan, ZHAO Feng, WANG Xiaoyang, LYU Jie, ZHANG Dengfeng. Principal component selection method for hyperspectral remote sensing images based on spatial statistics[J]. Remote Sensing for Natural Resources, 2022, 34(2): 37-46.
[3] QIN Dahui, YANG Ling, CHEN Lunchao, DUAN Yunfei, JIA Hongliang, LI Zhenpei, MA Jianqin. A study on the characteristics and model of drought in Xinjiang based on multi-source data[J]. Remote Sensing for Natural Resources, 2022, 34(1): 151-157.
[4] ZHANG Qinrui, ZHAO Liangjun, LIN Guojun, WAN Honglin. Ecological environment assessment of three-river confluence in Yibin City using improved remote sensing ecological index[J]. Remote Sensing for Natural Resources, 2022, 34(1): 230-237.
[5] WEI Yingjuan, LIU Huan. Remote sensing-based mineralized alteration information extraction and prospecting prediction of the Beiya gold deposit, Yunnan Province[J]. Remote Sensing for Natural Resources, 2021, 33(3): 156-163.
[6] MUHADAISI Ariken, ZHANG Fei, LIU Kang, AYINUER Yushanjiang. Urban ecological environment evaluation based on Tiangong-2 and Landsat8 data[J]. Remote Sensing for Land & Resources, 2020, 32(4): 209-218.
[7] Benzuo YAO, Fang HE. Spatial and spectral feature hierarchical fusion for hyperspectral image feature extraction[J]. Remote Sensing for Land & Resources, 2019, 31(3): 59-64.
[8] Lixin DONG. Multi-model estimation of forest leaf area index in the Three Gorges Reservoir area[J]. Remote Sensing for Land & Resources, 2019, 31(2): 73-81.
[9] Bing TU, Xiaofei ZHANG, Guoyun ZHANG, Jinping WANG, Yao ZHOU. Hyperspectral image classification via recursive filtering and KNN[J]. Remote Sensing for Land & Resources, 2019, 31(1): 22-32.
[10] Lingyu YIN, Xianlin QIN, Guifen SUN, Shuchao LIU, Xiaofeng ZU, Xiaozhong CHEN. The method for detecting forest cover change in GF-1images by using KPCA[J]. Remote Sensing for Land & Resources, 2018, 30(1): 95-101.
[11] Hongmin ZHANG, Yanfang ZHANG, Mao TIAN, Chunling WU. Dynamic monitoring of eco-environment quality changes based on PCA:A case study of urban area of Baoji City[J]. Remote Sensing for Land & Resources, 2018, 30(1): 203-209.
[12] ZHANG Qianning, TAN Shiteng, XU Zhu, HUANG Zechun. Applicability and simplification study of patch level landscape metrics based on GLC30[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(4): 98-105.
[13] DENG Zeng, LI Dan, KE Yinghai, WU Yanchen, LI Xiaojuan, GONG Huili. An improved SVM algorithm for high spatial resolution remote sensing image classification[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(3): 12-18.
[14] CHENG Gong, ZHU Jiawei, MAO Xiancheng. Remote sensing prospecting prediction in periphery of the Jinchuan copper-nickel deposit based on ASTER data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(1): 15-21.
[15] HUANG Wei, HUANG Jinliang, WANG Lihui, HU Yanxia, HAN Pengpeng. Remote sensing image change detection based on change vector analysis of PCA component[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(1): 22-27.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech