Please wait a minute...
 
Remote Sensing for Land & Resources    2018, Vol. 30 Issue (1) : 95-101     DOI: 10.6046/gtzyyg.2018.01.13
Orginal Article |
The method for detecting forest cover change in GF-1images by using KPCA
Lingyu YIN1(), Xianlin QIN1(), Guifen SUN1, Shuchao LIU1, Xiaofeng ZU1, Xiaozhong CHEN2
1. Research Institute of Forest Resource Information Technique, Chinese Academy of Forestry, Beijing 100091, China
2. ForestInformation Center of Sichuan Province, Chengdu 610081, China
Download: PDF(873 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

In order to study the methods for forest cover change monitoring by using GF-1 images, the Yajiang County in Sichuan Province was selected as the research area to extract the information of forest coverage based on the two GF-1 WFV data. Firstly, the data were normalized by using the iteration re-weight multivariate alteration detection(IR-MAD)method. The two images were transformed by kernel principal component analysis(KPCA)method, and formed differencing image. Then, the changed area was extracted using the method of maximum between class variances(OTSU)for automatic threshold selection. Finally, the change detection results were validated using OTSU with the field sample data, and the extracted results were verified by way of precision test, and comparatively analyzed with the change vector analysis(CVA). The research results show that the overall accuracy of the two change detection methods is higher than 80%, and the overall accuracy of the KPCA method is 89.27%. The user precision of unchanged area is 93.88%, and the user's accuracy of changed area is 80.28%. The accuracy of the KPCA method is better than that of the algorithm based on the traditional CVA method. It is shown that, after the data transformation, KPCA algorithm can reduce the correlation between the variables and enhance the signal to noise ratio of the image, thus improving the recognition accuracy for the changed area.

Keywords GF-1      iteration re-weight multivariate alteration detection(IR-MAD)      kernel principal component analysis(KPCA)      method of maximum between class variance(OTSU)     
:  TP79  
Issue Date: 08 February 2018
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Lingyu YIN
Xianlin QIN
Guifen SUN
Shuchao LIU
Xiaofeng ZU
Xiaozhong CHEN
Cite this article:   
Lingyu YIN,Xianlin QIN,Guifen SUN, et al. The method for detecting forest cover change in GF-1images by using KPCA[J]. Remote Sensing for Land & Resources, 2018, 30(1): 95-101.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2018.01.13     OR     https://www.gtzyyg.com/EN/Y2018/V30/I1/95
载荷 波段号 谱段范围/μm 空间分辨率/m 幅宽/km 侧摆能力/(°) 重访时间/d
多光谱相机 1
2
3
4
0.45~0.52
0.52~0.59
0.63~0.69
0.77~0.89
16 800
(4台相机组合)
±35° 4
Tab.1  Parameters for WFV of GF-1 satellite
Fig.1  Scatter plots and regression equations ofno changed pixels in each band
类别 B1 B2 B3 B4
目标影像(2016年) 435.939 4 160.580 9 151.038 7 838.843 8
参考影像(2014年) 113.770 0 143.727 7 189.128 4 901.870 9
辐射归一化后目标影像 113.787 0 143.685 0 189.172 2 902.127 9
Tab.2  Average reflectivity of different bands of target image before and after radiation normalization and reference image
年份 KPCA主成
分序号
特征值 方差贡献率
/%
累计方差
贡献率/%
2014 1 481 531.37 93.990 93.990
2 30 326.56 5.920 99.901
3 369.81 0.072 99.982
4 45.89 0.018 100.000
2016 1 433 300.52 91.710 91.710
2 38 609.56 8.170 99.880
3 462.11 0.098 99.978
4 89.24 0.022 100.000
Tab.3  Variance distribution of principal components of GF-1 image KPCA
Fig.2  Local images of east part in YajiangCounty
Fig.3  Binary images of changed areas
Fig.4  Result extractedfrom changed areas
变化检测法 类别 检验样本点/个 列总数 用户
精度/%
变化区 未变化区
KPCA法 变化区 114.00 28.00 142 80.28
未变化区 17.00 261.00 278 93.88
行总数 131.00 289.00 420
生产者精度/% 87.02 90.32
总体精度/% 89.27
CVA法 变化区 92.00 31.00 123 74.80
未变化区 39.00 258.00 297 86.87
行总数 131.00 289.00 420
生产者精度/% 70.23 89.28
总体精度/% 83.33
Tab.4  Accuracy of two methods for change detection
[1] Fazakas Z,Nilsson M,Olsson H. Regional forest biomass and wood volume estimation using satellite data and ancillary data[J].Agricultural and Forest Meteorology,1999,98-99:417-425.
[2] 李俊明,邢艳秋,杨超,等.基于环境与灾害监测预报小卫星的树种识别[J].东北林业大学学报,2013,41(11):41-45,50.
[2] Li J M,Xing Y Q,Yang C,et al.Forest type identification based on hyperspectral remote sensing image of environment and disaster monito-ring satellite[J].Journal of Northeast Forestry University,2013,41(11):41-45,50.
[3] 吴雪琼,覃先林,周汝良,等.森林覆盖变化遥感监测方法研究进展[J]. 林业资源管理, 2010(4):82-87.
[3] Wu X Q,Qin X L,Zhou R L,et al.Progress of study on forest cover change detection by using remote sensing technique[J]. Forest Resources Management, 2010(4):82-87.
[4] 钟家强,王润生.基于独立成分分析的多时相遥感图像变化检测[J].电子与信息学报,2006,28(6):994-998.
[4] Zhong J Q,Wang R S.Multitemporal remote sensing images change detection based on ICA[J].Journal of Electronics & Information Technology,2006,28(6):994-998.
[5] 李世明,王志慧,韩学文,等.森林资源变化遥感监测技术研究进展[J].北京林业大学学报,2011,33(3):132-138.
[5] Li S M,Wang Z H,Han X W,et al.Overview of forest resources change detection methods using remote sensing techniques[J].Journal of Beijing Forestry University,2011,33(3):132-138.
[6] 覃先林,陈尔学,李增元,等.基于MODIS数据的森林覆盖变化监测方法研究[J].遥感技术与应用,2006,21(3):178-183.
[6] Qin X L,Chen E X,LI Z Y,et al.Forest cover change monitoring using MODIS data[J].Remote Sensing Technology and Application,2006,21(3):178-183.
[7] Platt R V,Schoennagel T.An object-oriented approach to assessing changes in tree cover in the Colorado front range 1938―1999[J].Forest Ecology and Management,2009,258(7):1342-1349.
[8] Hese S,Schmullius C. Forest cover change in Siberia-results from the Siberia-II project[EB/OL].(2011-01-11)[2016-08-01]..
url: http://www.Ecognition.com/document/forest-cover-changesiberia-results-siberia-ii-project
[9] Collins J B,Woodcock C E.An assessment of several linear change detection techniques for mapping forest mortality using multitemporal Landsat TM data[J].Remote Sensing of Environment,1996,56(1):66-77.
[10] 黄维,黄进良,王立辉,等.基于PCA的变化向量分析法遥感影像变化检测[J].国土资源遥感,2016,28(1):22-27.doi:10.6046/gtzyyg.2016.01.04.
[10] Huang W,Huang J L,Wang L H,et al.Remote sensing image change detection based on change vector analysis of PCA component[J].Remote Sensing for Land and Resources,2016,28(1):22-27.doi:10.6046/gtzyyg.2016.01.04.
[11] 刚慧龙. 基于IR-MAD算法的多元遥感影像变化检测方法研究[D].青岛:山东科技大学,2014.
[11] Gang H L.The Study of Change Detection Method for Multivariate Remote Sensing Data based on the IR-MAD Algorithm[D].Qingdao:Shandong University of Science and Technology,2014.
[12] 沈照庆,陶建斌.基于模糊核主成分分析的高光谱遥感影像特征提取研究[J].国土资源遥感,2009,21(3):41-44,99.doi:10.6046/gtzyyg.2009.03.08.
[12] Shen Z Q,Tao J B.Hyperspectral remote sensing image feature extraction based on fuzzy kernel principal component analysis[J].Remote Sensing for Land and Resources,2009,21(3):41-44,99.doi:10.6046/gtzyyg.2009.03.08.
[13] 杨帆,马洁.基于KPCA数据重构的参数优化方法[J].北京信息科技大学学报,2014,29(6):46-50.
[13] Yang F,Ma J.Parameter optimization method based on KPCA data reconstruction[J].Journal of Beijing Information Science and Technology University,2014,29(6):46-50.
[14] 王国胜. 核函数的性质及其构造方法[J].计算机科学,2006,33(6):172-174,178.
[14] Wang G S.Properties and construction methods of kernel in support vector machine[J].Computer Science,2006,33(6):172-174,178.
[15] Malila W A.Change vector analysis:An approach for detecting forest changes with Landsat[C]//Proceedings of Sixth International Symposium on Machine Processing of Remotely Sensed Data.West Lafayette,Indiana:Purdue University,1980.
[16] 林克正,班守峰,张玉双.一种基于变化向量分析的变化检测方法[J].哈尔滨理工大学学报,2008,13(4):47-49.
[16] Lin K Z,Ban S F,Zhang Y S.A change detection based on change vector analysis[J].Journal of Harbin University of Science and Technology,2008,13(4):47-49.
[17] 魏伟一. 基于小波域灰度拉伸的Ostu图像分割[J].西北师范大学学报(自然科学版),2009,45(6):46-48.
[17] Wei W Y.New Ostu image segmentation based on intensity stretching on DWT fields[J].Journal of Northwest Normal University(Natural Science),2009,45(6):46-48.
[18] 蔡燕伟,崔红霞.基于彩色空间的二维OSTU的图像分割算法[J].电子设计工程,2014,22(5):131-133.
[18] Cai Y W,Cui H X.Image segmentation algorithm based on two-dimensional OSTU of color space[J].Electronic Design Engineering,2014,22(5):131-133.
[1] WANG Rong, ZHAO Hongli, JIANG Yunzhong, HE Yi, DUAN Hao. Application and analyses of texture features based on GF-1 WFV images in monthly information extraction of crops[J]. Remote Sensing for Natural Resources, 2021, 33(3): 72-79.
[2] LI Xusheng, LIU Yufeng, CHEN Donghua, LIU Saisai, LI Hu. Cloud detection based on support vector machine with image features for GF-1 data[J]. Remote Sensing for Land & Resources, 2020, 32(3): 55-62.
[3] Yizhe WANG, Guo LIU, Li GUO, Shihu ZHAO, Xueli ZHANG. Research on ortho-rectification and true color synthesis technique of GF-1 WFV data in China-Pakistan Economic Corridor[J]. Remote Sensing for Land & Resources, 2020, 32(2): 213-218.
[4] Zhuhong ZHANG, Baoyun WANG, Yumei SUN, Caidong LI, Xianchen SUN, Lingli ZHANG. River extraction from GF-1 satellite images combining stroke width transform and a geometric feature set[J]. Remote Sensing for Land & Resources, 2020, 32(2): 54-62.
[5] Ning WANG, Jiahua CHENG, Hanye ZHANG, Hongjie CAO, Jun LIU. Application of U-net model to water extraction with high resolution remote sensing data[J]. Remote Sensing for Land & Resources, 2020, 32(1): 35-42.
[6] Hui YUAN, Qiming QIN, Yuanheng SUN. Validation of LAI retrieval results of winter wheat in Yancheng, Luohe area of Henan Province[J]. Remote Sensing for Land & Resources, 2020, 32(1): 162-168.
[7] Jida PENG, Chungui ZHANG. Remote sensing monitoring of vegetation coverage by GF-1 satellite: A case study in Xiamen City[J]. Remote Sensing for Land & Resources, 2019, 31(4): 137-142.
[8] Xiaotong LI, Xianlin QIN, Shuchao LIU, Guifen SUN, Qian LIU. Estimation of forest leaf area index based on GF-1 WFV data[J]. Remote Sensing for Land & Resources, 2019, 31(3): 80-86.
[9] Guifen SUN, Xianlin QIN, Shuchao LIU, Xiaotong LI, Xiaozhong CHEN, Xiangqing ZHONG. Potential analysis of typical vegetation index for identifying burned area[J]. Remote Sensing for Land & Resources, 2019, 31(1): 204-211.
[10] Chen GAO, Jian XU, Dan GAO, Lili WANG, Yeqiao WANG. Retrieval of concentration of total suspended matter from GF-1 satellite and field measured spectral data during flood period in Poyang Lake[J]. Remote Sensing for Land & Resources, 2019, 31(1): 101-109.
[11] Yilin JIA, Wen ZHANG, Lingkui MENG. A study of selection method of NDWI segmentation threshold for GF-1 image[J]. Remote Sensing for Land & Resources, 2019, 31(1): 95-100.
[12] Jian LIAO, Xingfa GU, Yulin ZHAN, Yazhou ZHANG, Xinyu REN, Shuaiyi SHI. A method based on harmonic model for generating synthetic GF-1 images[J]. Remote Sensing for Land & Resources, 2018, 30(3): 106-112.
[13] Ruijun WANG, Bokun YAN, Mingsong LI, Shuangfa DONG, Yongbin SUN, Bing WANG. Remote sensing interpretation of important ore-controlling geological units in Hongshan Region of Gansu Province using GF-1 image and its application[J]. Remote Sensing for Land & Resources, 2018, 30(2): 162-170.
[14] CHENG Yang, TANG Jiansheng, SU Chuntian, YANG Yang, LUO Fei. Application of the GF-1 data to karst hydrogeological survey[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(s1): 58-66.
[15] ZHANG Ce, JIE Wenhui, FU Lihua, WEI Benzan. Remote sensing image and distribution characteristics of landslide disasters in Xinyuan County, Xinjiang[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(s1): 81-84.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech