Please wait a minute...
 
Remote Sensing for Land & Resources    2019, Vol. 31 Issue (1) : 87-94     DOI: 10.6046/gtzyyg.2019.01.12
|
Study and application of sequential extraction method of ground fissures based on object
Xinghang ZHANG1,2, Lin ZHU1,2(), Wei WANG3, Lishan MENG3, Xiaojuan LI1,2, Yingchao REN4
1.College of Resource Environment and Tourism, Capital Normal University, Beijing 100048, China
2.Laboratory Cultivation Base of Environment Process and Digital Simulation, Beijing 100048, China
3.Laboratory of Non-fossil Energy Minerals,Tianjin Center of China Geological Survey, Tianjin 300170, China
4.The State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100101, China
Download: PDF(4819 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

The automatic extraction technology of regional scale ground fissures based on remote sensing images has the problem of low spectral range and low geometric feature, which leads to low extraction precision. Therefore, the sequential step extraction method for ground fissures based on objects is proposed. Firstly, the image is segmented. According to the spectral and geometric characteristics of segmentation object, surface interference factors which are different from the ground fissures are removed by mask. On such a basis, the linear objects are extracted and the surface factors without linear features are removed ultimately. Finally, the fractal characteristics of linear objects are calculated to differentiate between the ground fissures and other linear surface factors and complete the automatic extraction of ground fissures. The method was applied to the extraction of ground fissures in a coal-mining region of northeastern Ordos. The results show that the method is effective in extracting the ground fissures. Its accuracy reaches 85.7%, which is better than the precision of traditional supervised classification method (57.1%) and the precision of knowledge model extraction method (71.4%) . On the basis of extraction results, this paper discusses the distribution characteristics of ground fissures. The respective relations between ground fissures and the location of goafs as well as topography are analyzed. The results show that the number of ground fissures is negatively correlated to the distance of goafs and is not clearly correlated to the topography. The research can provide the necessary technical support for the regional geological environment protection and the rational exploitation of coal resources in the mining area.

Keywords GeoEye image      ground fissures      sequential extraction      feature extraction     
:  TP79  
Corresponding Authors: Lin ZHU     E-mail: zhulin@163.com
Issue Date: 15 March 2019
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xinghang ZHANG
Lin ZHU
Wei WANG
Lishan MENG
Xiaojuan LI
Yingchao REN
Cite this article:   
Xinghang ZHANG,Lin ZHU,Wei WANG, et al. Study and application of sequential extraction method of ground fissures based on object[J]. Remote Sensing for Land & Resources, 2019, 31(1): 87-94.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2019.01.12     OR     https://www.gtzyyg.com/EN/Y2019/V31/I1/87
Fig.1  Location of study area
Fig.2  Flow chart of proposed method
Fig.3  Results of different segmentation scales
Tab.1  Spectral threshold range of ground fissure
Tab.2  Geometric feature threshold range of ground fissure
Fig.4  Results of mask processing
Fig.5  Comparison of Canny operator linear extraction
Fig.6  Results of linear feature extraction in test area
Fig.7  Results of ground fissures extraction in test area
Fig.8  Supervised classification and knowledge model extraction results in test area
提取方法 正确提
取数/条
错误提
取数/条
提取总
数/条
实际总
数/条
正确提
取率/%
错误提
取率/%
本文方法 6 2 8 7 85.7 28.6
监督分类方法 4 6 10 7 57.1 85.7
知识模型方法 5 5 10 7 71.4 71.4
Tab.3  Accuracy assessment results of ground fissure extraction in test area
Fig.9  Results of ground fissures extraction in study area
Fig.10  Direction of crack in study area
缓冲区距离/m [0,50) [50,100) [100,500) ≥500
地裂缝数/条 6 2 1 1
Tab.4  Result of the amount of ground fissures located in different buffer zone of coal mining
等高线/m [0,1 350) [1 350,1 400) [1 400,1 450) ≥1 450
地裂缝数/条 0 3 3 4
Tab.5  Result of ground fissures number in different buffer zone of topography
[1] 符继卫 . 矿区采空塌陷与地裂缝灾害探析[J]. 山西焦煤科技, 2011,35(7):46-48.
doi: 10.3969/j.issn.1672-0652.2011.07.013 url: http://d.wanfangdata.com.cn/Periodical/sxjmkj201107013
[1] Fu J W . Discussion on mining subsidence and ground fissures[J]. Shanxi Coking Coal Science and Technology, 2011,35(7):46-48.
[2] Xu L Q, Li S Z, Cao X Z , et al. Holocene intracontinental deformation of the northern North China Plain:Evidence of tectonic ground fissures[J]. Journal of Asian Earth Sciences, 2016,119(9):49-64.
doi: 10.1016/j.jseaes.2016.01.003 url: https://linkinghub.elsevier.com/retrieve/pii/S1367912016300037
[3] Peng J B, Qiao J W, Leng Y Q , et al. Distribution and mechanism of the ground fissures in Wei River Basin,the origin of the Silk Road[J]. Environmental Earth Sciences, 2016,75(8):718.
doi: 10.1007/s12665-016-5527-3 url: http://link.springer.com/10.1007/s12665-016-5527-3
[4] 赵炜 . 基于GIS、RS技术的陕北煤炭开发区地裂缝信息的自动提取[D]. 西安:长安大学, 2009.
[4] Zhao W . Based on the GIS and RS Technology of Remote Sensing of Cracks in the Coal Mining Area in North Shaanxi[D]. Xi’an:Chang’an University, 2009.
[5] 王娅娟, 孟淑英, 李军 , 等. 地裂缝信息遥感提取方法研究[J]. 神华科技, 2011,9(5):31-33,39.
doi: 10.3969/j.issn.1674-8492.2011.05.010 url: http://www.cnki.com.cn/Article/CJFDTotal-SBMT201105011.htm
[5] Wang Y J, Meng S Y ,Li J. et al.Study on remote sensing extraction of cracks information[J]. Shen Hua Science and Technology, 2011,9(5):31-33,39.
[6] 魏长婧, 汪云甲, 王坚 , 等. 无人机影像提取矿区地裂缝信息技术研究[J]. 金属矿山, 2012,41(10):90-92,96.
doi: 10.3969/j.issn.1001-1250.2012.10.024 url: http://www.cqvip.com/QK/90084X/201210/43851154.html
[6] Wei C J, Wang Y J ,Wang J. et al.The technical research of extracting ground fissure information in mining area with the UAV image[J]. Metal Mine, 2012,41(10):90-92,96.
[7] Wang Y J, Tian F, Huang Y , et al. Monitoring coal fires in Datong coalfield using multi-source remote sensing data[J]. Transactions of Nonferrous Metals Society of China, 2015,25(10):3421-3428.
doi: 10.1016/S1003-6326(15)63977-2 url: https://linkinghub.elsevier.com/retrieve/pii/S1003632615639772
[8] 肖春蕾, 郭兆成, 张宗贵 , 等. 利用机载LiDAR数据提取与分析地裂缝[J].国土资源遥感, 2014(4):111-118.doi: 10.6046/gtzyyg.2014.04.18.
doi: 10.6046/gtzyyg.2014.04.18 url: http://www.cqvip.com/QK/91397X/201404/663060372.html
[8] Xiao C L, Guo Z C, Zhang Z G , et al. Extraction and analysis of ground fissures from airborne LiDAR data[J]. Remote Sensing for Land and Resources, 2014,26(4):111-118.doi: 10.6046/gtzyyg.2014.04.18.
[9] Gruen A, Li H . Semi-automatic linear feature extraction by dynamic programming and LSB-Snakes[J]. Photogrammetric Engineering and Remote Sensing, 1997,63(8):985-995.
[10] 李朝锋 . 遥感图像智能处理[M]. 北京: 电子工业出版社, 2007.
[10] Li Z F. Intelligent Processing of Remote Sensing Images[M]. Beijing: Pubshing House of Electronics Industry, 2007.
[11] Peng J B, Sun X H, Wang W , et al. Characteristics of land subsidence,earth fissures and related disaster chain effects with respect to urban hazards in Xi’an,China[J]. Environmental Earth Sciences, 2016,75(16):1190.
doi: 10.1007/s12665-016-5928-3 url: http://link.springer.com/10.1007/s12665-016-5928-3
[12] 张正健, 李爱农, 雷光斌 , 等. 基于多尺度分割和决策树算法的山区遥感影像变化检测方法——以四川攀西地区为例[J]. 生态学报, 2014,34(24):7222-7232.
doi: 10.5846/stxb201310112439
[12] Zhang Z J, Li A N, Lei G B , et al. Change detection of remote sensing images based on multiscale segmentation and decision tree algorithm over mountainous area:A case study in Panxi region,Sichuan Province[J]. Acta Ecologica Sinica, 2014,34(24):7222-7232.
[13] 鲁恒, 付萧, 李龙国 , 等. 最优分割尺度支持下高分遥感影像水土资源信息分类[J]. 农业机械学报, 2016,47(9):327-333.
doi: 10.6041/j.issn.1000-1298.2016.09.044 url: http://www.cnki.com.cn/Article/CJFDTotal-NYJX201609044.htm
[13] Lu H, Fu X, Li L G , et al. Soil and water resources information classification in high resolution images with optimal segmentation scale[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016,47(9):327-333.
[14] 宫兆宁, 赵雅莉, 赵文吉 , 等. 基于光谱指数的植物叶片叶绿素含量的估算模型[J]. 生态学报, 2014,34(20):5736-5745.
doi: 10.5846/stxb201301250160 url: http://www.cqvip.com/QK/90772X/201420/662700980.html
[14] Gong Z N, Zhao Y L, Zhao W J , et al. Estimation model for plant leaf chlorophyll content based on the spectral index content[J]. Acta Ecologica Sinic, 2014,34(20):5736-5745.
[15] 王今飞 . 遥感卫星图像中线性地质特征的自动提取[J]. 第四纪研究, 2000,20(3):252-258.
doi: 10.3321/j.issn:1001-7410.2000.03.006 url: http://www.cnki.com.cn/Article/CJFDTotal-DSJJ200003006.htm
[15] Wang J F . Automated geologic lineament detection from satellite remote sensing imagery[J]. Quaternary Sciences, 2000,20(3):252-258.
[16] 吴俐民, 於雪琴, 黄亮 . FCM聚类算法协同Canny算子的遥感影像边缘检测方法[J]. 测绘工程, 2014,23(12):1-4.
doi: 10.3969/j.issn.1006-7949.2014.12.001 url: http://www.cnki.com.cn/Article/CJFDTotal-CHGC201412001.htm
[16] Wu L M, Yu X Q, Huang L . Edge detection method of remote sensing images based on FCM clustering algorithm and canny operator. Engineering of Surveying and Mapping, 2014,23(12):1-4.
[17] 孙少林, 马志强, 汤伟 . 灰度图像二值化算法研究[J]. 价值工程, 2010,29(5):142-143.
doi: 10.3969/j.issn.1006-4311.2010.05.080 url: http://d.wanfangdata.com.cn/Periodical/jzgc201005080
[17] Sun S L, Ma Z Q, Tang W . Research on gray-level image binarization algorithms[J]. Value Engineering, 2010,29(5):142-143.
[18] Mandelbrot B B . The fractal geometry of nature[J]. The Quarterly Review of Biology, 1983,58(3):412-413.
doi: 10.1119/1.13295 url: http://www.ams.org/mathscinet-getitem?mr=665254
[19] 宋晓夏, 唐跃刚, 李伟 , 等. 中梁山南矿构造煤吸附孔分形特征[J]. 煤炭学报, 2013,38(1):134-139.
doi: url: http://d.wanfangdata.com.cn/Periodical/mtxb201301022
[19] Song X X, Tang Y G, Li W , et al. Fractal characteristics of adsorption pores of tectonic coal from Zhongliangshan southern coalmine[J]. Journal of China Coal Society, 2013,38(1):134-139.
[1] QU Haicheng, WAND Yaxuan, SHEN Lei. Hyperspectral super-resolution combining multi-receptive field features with spectral-spatial attention[J]. Remote Sensing for Natural Resources, 2022, 34(1): 43-52.
[2] CAI Xiang, LI Qi, LUO Yan, QI Jiandong. Surface features extraction of mining area image based on object-oriented and deep-learning method[J]. Remote Sensing for Land & Resources, 2021, 33(1): 63-71.
[3] LI Xusheng, LIU Yufeng, CHEN Donghua, LIU Saisai, LI Hu. Cloud detection based on support vector machine with image features for GF-1 data[J]. Remote Sensing for Land & Resources, 2020, 32(3): 55-62.
[4] WEI Yingjuan, ZHENG Xiongwei, LEI Bing, GAN Yuhang. Realization of clouds automatic extraction of GF-1 remote sensing image based on sample model[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(s1): 39-45.
[5] ZHANG Yongmei, YANG Fei, XU Jing. An improved length variable angle chain code algorithm and its application to dock identification[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(4): 164-169.
[6] LI Fuyu, YE Famao. Summarization of SIFT-based remote sensing image registration techniques[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(2): 14-20.
[7] LIU Pengcheng. Feature extraction of coastline contour based on level set theory[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(2): 75-79.
[8] CHANG Ruichun, WANG Lu, WANG Maozhi. Application of FastICA in mineral information extraction from hyperspectral remote sensing data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2013, 25(4): 129-132.
[9] LI Ting, ZHAN Qing-ming, YU Liang. A Classification Method for Mobile Laser Scanning Data Based on Object Feature Extraction[J]. REMOTE SENSING FOR LAND & RESOURCES, 2012, 24(1): 17-21.
[10] CUI Lin-lin, LUO Yi, BAO An-ming. Land Cover Classification with SVM Based on NWFE and Texture Features[J]. REMOTE SENSING FOR LAND & RESOURCES, 2012, 24(1): 36-42.
[11] SHEN Zhao-Qing, TAO Jian-Bin. HYPERSPECTRAL REMOTE SENSING IMAGE FEATURE EXTRACTION
BASED ON FUZZY KERNEL PRINCIPAL COMPONENT ANALYSIS
[J]. REMOTE SENSING FOR LAND & RESOURCES, 2009, 21(3): 41-44.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech