Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2012, Vol. 24 Issue (1) : 36-42     DOI: 10.6046/gtzyyg.2012.01.07
Technology and Methodology |
Land Cover Classification with SVM Based on NWFE and Texture Features
CUI Lin-lin1,2, LUO Yi1, BAO An-ming1
1. Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China;
2. Graduate School, Chinese Academy of Sciences, Beijing 100049, China
Download: PDF(5109 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  Land cover classification based on remote sensing image is of significant importance to agriculture, forestry and environment monitoring. Algorithm of remote sensing information retrieval is always an important research topic in this field. This paper made an effort to combine the Nonparametric Weighted Feature Extraction (NWFE) and texture features with the Support Vector Machines (SVM) so as to achieve a higher classification precision. The combined approach was applied to land cover classification of the Manasi River oasis in Xinjiang in 2006, and was compared with approaches of SVM based on Principal Component Analysis (PCA) and texture features and based on original bands and texture features. The results show that the method of SVM combined with NWFE and texture features can capture not only the distribution of land cover but also the difference among land cover types. An overall classification accuracy of 89.17% is obtained, which is better than those of two other classification results.
Keywords Remote sensing      Wangwu mountain      Xichengshan karst depression      Origin of karst      Aerolite striking     
: 

TP 751.1

 
  TP 274  
  S 127

 
Issue Date: 07 March 2012
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LIU Gang
LI Shu-jing
CAO Wen-yu
HUANG Xiang-cheng
Cite this article:   
LIU Gang,LI Shu-jing,CAO Wen-yu, et al. Land Cover Classification with SVM Based on NWFE and Texture Features[J]. REMOTE SENSING FOR LAND & RESOURCES, 2012, 24(1): 36-42.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2012.01.07     OR     https://www.gtzyyg.com/EN/Y2012/V24/I1/36
[1] 王静.土地资源遥感监测与评价方法[M].北京:科学出版社,2006:60-61.
[2] 喻小倩,刘娜,李红,等.基于线性光谱混合分解和最大似然分类相结合的土地覆被分类——以红寺堡灌区为例[J].国土资源遥感,2010(1):96-100.
[3] 孙秀邦,范伟,严平,等.遥感影像土地覆被分类研究进展[J].中国农学通报,2007,23(9):607-610.
[4] 关泽群,刘继琳,崔卫红.利用地物的几何属性改进影像分类效果[J].国土资源遥感,2001(1):31-35.
[5] 钱乐祥,崔海山.运用归一化光谱混合模型分析城市地表组成[J].国土资源遥感,2006(2):64-68.
[6] 汪闽,万其明,张大骞,等.光谱、形状特征结合的多精度图像分割算法与应用[J].地球信息科学学报,2010(2):2261-2268.
[7] Kuo B C,Landgrebe D A.Improved Statistics Estimation and Feature Extraction for Hyperspectral Data Classification[D].Ph D Thesis and School of Electrical and Computer Engineering,Purdue University,West Lafayette,IN,Tech Rep TR-ECE,2001:1-6.
[8] 王硕,周激流,彭博.基于API序列分析和支持向量机的未知病毒检测[J].计算机应用,2010,27(8):1942-1943.
[9] 祁亨年,杨建刚,方露明.基于多类支持向量机的遥感图像分类及其半监督式改进策略[J].复旦学报:自然科学版,2004,43(5):781-784.
[10] 朱志宇,张冰,刘维亭.基于模糊支持向量机的语音识别方法[J].计算机工程,2006,32(2):180-182.
[11] Tadjudin S,Landgrebe D A.Classification of High Dimensional Data with Limited Training Samples[D].Purdue University,West Lafayette,IN,TR-EE 98-8,April,1998:35-82.
[12] 唐发明,王仲东,陈绵云.支持向量机多分类分类算法研究[J].控制与决策,2005,20(7):746-749,754.
[13] 中国科学院计算机网络信息中心国际科学数据服务平台[DB/OL].[2011-05-31].http://datamirror.csdb.cn.
[14] Gao Y N,Zhang W C.Variable Empirical Coefficient Algorithm for Removal of Topographic Effects on Remotely Sensed Data from Rugged Terrain[C]//IGARSS’2007,IEEE,2007:4733-4736.
[15] 祁享年.支持向量机及其应用研究综述[J].计算机工程,2004,30(10):6-9.
[16] Richards J A,Jia X P.Remote Sensing Digital Image Analysis:An Introduction,4th ed.[M].Berlin,Germany:Springer-Verlag,2006.
[17] 舒宁.卫星遥感影像纹理分析与分形分维方法[J].武汉测绘科技大学学报,1998,23(4):370-373.
[18] Barald A,Parminggian F.An Investigation on the Texture Characteristics Associated with Gray Level Co-occurrence Matrix Statistical Parameters[J].IEEE Trans on Geosciences and Remote Sensing,1995,32(2):293-303.
[19] Roli F,Fumera G.Support Vector Machines for Remote Sensing Image Classification[C]//Proc of SPIE,2001:160-166.
[20] Vapnik V N.The Nature of Statistical Learning Theory[M].New York:Springer,2000.
[21] 谢承旺.不同种类支持向量机算法的比较研究[J].小型微型计算机系统,2008,29(1):106-109.
[22] Keerthi S S,Lin C I.Asymptotic Behaviors of Support Vector Machines with Gaussian Kernel[J].Neural Computation,2003,15(7):1667-1689.
[1] LIU Wen, WANG Meng, SONG Ban, YU Tianbin, HUANG Xichao, JIANG Yu, SUN Yujiang. Surveys and chain structure study of potential hazards of ice avalanches based on optical remote sensing technology: A case study of southeast Tibet[J]. Remote Sensing for Natural Resources, 2022, 34(1): 265-276.
[2] WANG Qian, REN Guangli. Application of hyperspectral remote sensing data-based anomaly extraction in copper-gold prospecting in the Solake area in the Altyn metallogenic belt, Xinjiang[J]. Remote Sensing for Natural Resources, 2022, 34(1): 277-285.
[3] LYU Pin, XIONG Liyuan, XU Zhengqiang, ZHOU Xuecheng. FME-based method for attribute consistency checking of vector data of mines obtained from remote sensing monitoring[J]. Remote Sensing for Natural Resources, 2022, 34(1): 293-298.
[4] ZHANG Daming, ZHANG Xueyong, LI Lu, LIU Huayong. Remote sensing image segmentation based on Parzen window density estimation of super-pixels[J]. Remote Sensing for Natural Resources, 2022, 34(1): 53-60.
[5] XUE Bai, WANG Yizhe, LIU Shuhan, YUE Mingyu, WANG Yiying, ZHAO Shihu. Change detection of high-resolution remote sensing images based on Siamese network[J]. Remote Sensing for Natural Resources, 2022, 34(1): 61-66.
[6] SONG Renbo, ZHU Yuxin, GUO Renjie, ZHAO Pengfei, ZHAO Kexin, ZHU Jie, CHEN Ying. A method for 3D modeling of urban buildings based on multi-source data integration[J]. Remote Sensing for Natural Resources, 2022, 34(1): 93-105.
[7] LI Weiguang, HOU Meiting. A review of reconstruction methods for remote-sensing-based time series data of vegetation and some examples[J]. Remote Sensing for Natural Resources, 2022, 34(1): 1-9.
[8] DING Bo, LI Wei, HU Ke. Inversion of total suspended matter concentration in Maowei Sea and its estuary, Southwest China using contemporaneous optical data and GF SAR data[J]. Remote Sensing for Natural Resources, 2022, 34(1): 10-17.
[9] GAO Qi, WANG Yuzhen, FENG Chunhui, MA Ziqiang, LIU Weiyang, PENG Jie, JI Yanzhen. Remote sensing inversion of desert soil moisture based on improved spectral indices[J]. Remote Sensing for Natural Resources, 2022, 34(1): 142-150.
[10] ZHANG Qinrui, ZHAO Liangjun, LIN Guojun, WAN Honglin. Ecological environment assessment of three-river confluence in Yibin City using improved remote sensing ecological index[J]. Remote Sensing for Natural Resources, 2022, 34(1): 230-237.
[11] HE Peng, TONG Liqiang, GUO Zhaocheng, TU Jienan, WANG Genhou. A study on hidden risks of glacial lake outburst floods based on relief amplitude: A case study of eastern Shishapangma[J]. Remote Sensing for Natural Resources, 2022, 34(1): 257-264.
[12] AI Lu, SUN Shuyi, LI Shuguang, MA Hongzhang. Research progress on the cooperative inversion of soil moisture using optical and SAR remote sensing[J]. Remote Sensing for Natural Resources, 2021, 33(4): 10-18.
[13] LI Teya, SONG Yan, YU Xinli, ZHOU Yuanxiu. Monthly production estimation model for steel companies based on inversion of satellite thermal infrared temperature[J]. Remote Sensing for Natural Resources, 2021, 33(4): 121-129.
[14] LIU Bailu, GUAN Lei. An improved method for thermal stress detection of coral bleaching in the South China Sea[J]. Remote Sensing for Natural Resources, 2021, 33(4): 136-142.
[15] WU Fang, JIN Dingjian, ZHANG Zonggui, JI Xinyang, LI Tianqi, GAO Yu. A preliminary study on land-sea integrated topographic surveying based on CZMIL bathymetric technique[J]. Remote Sensing for Natural Resources, 2021, 33(4): 173-180.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech