Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2013, Vol. 25 Issue (4) : 129-132     DOI: 10.6046/gtzyyg.2013.04.20
Technology Application |
Application of FastICA in mineral information extraction from hyperspectral remote sensing data
CHANG Ruichun1,3, WANG Lu2, WANG Maozhi1,3
1. College of Management Science, Chengdu University of Technology, Chengdu 610059, China;
2. Chengdu Neusoft University, Chengdu 610059, China;
3. Geomathematics Key Laboratory of Sichuan Province, Chengdu 610059, China
Download: PDF(816 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Due to the lack of effective traditional hyperspectral image information extraction methods,this paper puts forward the hyperspectral remote sensing mineral information extraction technology based on the FastICA method. This technology first uses the virtual dimension (VD) method to determine the optimal number of features of hyperspectral remote sensing image data,and then employs the FastICA method to conduct dimensionality reduction and mixed pixel decomposition. Aimed at extracting mineral information, the technology uses the simulation plus noise hyperspectral remote sensing data as the experimental data, and the HyMap hyperspectral image is used as the end-member extraction accuracy evaluation data. The experimental results show that, after FastICA feature extraction, the precision of the hyperspectral simulation image remains higher than 90% in comparison with the classification of the spectral angle mapping (SAM), and the error of HyMap data end-member extraction control to 10-3. All this demonstrates the feasibility and effectiveness of this technology in dimensionality reduction and mixed pixel decomposition of hyperspectral data.

Keywords microwave      land surface emissivity      model     
:  TP79  
Issue Date: 21 October 2013
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WU Ying
WANG Zhenhui
Cite this article:   
WU Ying,WANG Zhenhui. Application of FastICA in mineral information extraction from hyperspectral remote sensing data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2013, 25(4): 129-132.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2013.04.20     OR     https://www.gtzyyg.com/EN/Y2013/V25/I4/129

[1] 王润生,熊盛青,聂洪峰,等.遥感地质勘查技术与应用研究[J].地质学报,2011,85(11):1699-1743. Wang R S, Xiong S Q,Nie H F,et al.Remote sensing technology and its application in geological exploration[J].Acta Geologica Sinica,2011,85(11):1699-1743

[2] 徐元进.面向找矿的高光谱遥感岩矿信息提取方法研究[D].北京:中国地质大学,2009. Xu Y J.Research of prospecting-oriented approaches to information extraction of rocks and minerals using hyperspectral remote sensing data[D].Beijing:China University of Geosciences,2009.

[3] 甘甫平,王润生,马蔼乃.基于特征谱带的高光谱遥感矿物谱系识别[J].地学前缘,2003,10(2):445-454. Gan F P,Wang R S,Ma G N.Spectral identification tree(SIT) for mineral extration based on spectral characteristics of minerals[J].Earth Science Frontiers,2003,10(2):445-454.

[4] 甘甫平,刘圣伟,周强.德兴铜矿矿山污染高光谱遥感直接识别研究[J].地球科学,2004,29(1):119-126. Gan F P,Liu S W,Zhou Q.Identification of mining pollution using hyperion data at dexing copper mine in Jiangxi Province,China[J].Earth Science,2004,29(1):119-126.

[5] 李娜,赵慧洁.高光谱数据非监督分类的改进独立成分分析方法[J].国土资源遥感,2011,23(2):70- 74. Li N,Zhao H J.An improved independent component analysis method for unsupervised classification of hyperspectral data[J].Remote Sensing for Land and Resources,2011,23(2):70-74.

[6] 林婷,刘湘南,谭 正.基于ICA和高光谱指数的水稻Zn污染监测模型[J].国土资源遥感,2011,23(2):59- 64. Lin T,Liu X N,Tan Z.Zn Contamination monitoring model of rice based on ICA and hyperspectral index[J].Remote Sensing for Land and Resources,2011,23(2):59- 64.

[7] 臧卓,林辉,杨敏华.ICA与PCA在高光谱数据降维分类中的对比研究[J].中南林业科技大学学报,2011,31(11):18-22. Zang Z,Lin H,Yang M H.Comparative study on descending dimension classification of hyperspectral data between ICA algorithm and PCA algorithm[J].Journal of Central South University of Forestry and Technology,2011,31(11):18-22.

[8] Hyvrinen A.Fast and robust fixed-point algorithms for independent component analysis[J].IEEE Transactions on Neural Networks,1999,10(3):626-634.

[9] Hyvrinen A.The fixed-point algorithm and maximum likelihood estimation for independent component analysis[J].Neural Process Lett,1999,10(1):1-5.

[10] 王祥涛,冯燕,陈 武.基于改进独立分量分析的高光谱数据分类研究[J].计算机仿真,2009,26(11):177-181. Wang X T,Fen Y,Chen W.Classification of hyperspectral data based on improved independent component analysis[J].Computer Simulation,2009,26(11):177-181.

[11] Chang J W C.Independent component analysis-based dimensionality reduction with applications in hyperspectral image analysis[J].IEEE Transactions on Geoscience and Remote Sensing,2006,44(6):1586-1594.

[12] 王璐.ICA在高光谱遥感矿物蚀变信息提取中的应用[D].成都:成都理工大学,2011. Wang L.Independent component analysis for mineralizing alteration information extraction of hyperspectral remote sensing data[D].Chengdu:Chengdu University of Technology,2011.

[1] WU Yijie, KONG Xuesong. Simulation and development mode suggestions of the spatial pattern of “ecology-agriculture-construction” land in Jiangsu Province[J]. Remote Sensing for Natural Resources, 2022, 34(1): 238-248.
[2] WANG Qian, REN Guangli. Application of hyperspectral remote sensing data-based anomaly extraction in copper-gold prospecting in the Solake area in the Altyn metallogenic belt, Xinjiang[J]. Remote Sensing for Natural Resources, 2022, 34(1): 277-285.
[3] SONG Renbo, ZHU Yuxin, GUO Renjie, ZHAO Pengfei, ZHAO Kexin, ZHU Jie, CHEN Ying. A method for 3D modeling of urban buildings based on multi-source data integration[J]. Remote Sensing for Natural Resources, 2022, 34(1): 93-105.
[4] AI Lu, SUN Shuyi, LI Shuguang, MA Hongzhang. Research progress on the cooperative inversion of soil moisture using optical and SAR remote sensing[J]. Remote Sensing for Natural Resources, 2021, 33(4): 10-18.
[5] LI Teya, SONG Yan, YU Xinli, ZHOU Yuanxiu. Monthly production estimation model for steel companies based on inversion of satellite thermal infrared temperature[J]. Remote Sensing for Natural Resources, 2021, 33(4): 121-129.
[6] XIAO Yehui, SONG Nidi, MENG Panpan, WANG Peijun, FAN Shenglong. Prediction of lead content in soil based on model population analysis coupled with ELM algorithm[J]. Remote Sensing for Natural Resources, 2021, 33(4): 143-152.
[7] YANG Yunxue, ZHANG Yanfang. Temporal-spatial evolutionary characteristics of ecological sensitivity in Yanhe River basin based on spatial distance index[J]. Remote Sensing for Natural Resources, 2021, 33(3): 229-237.
[8] CHEN Hong, GUO Zhaocheng, HE Peng. Spatial and temporal change characteristics of vegetation coverage in Erhai Lake basin during 1988—2018[J]. Remote Sensing for Land & Resources, 2021, 33(2): 116-123.
[9] LING Xiao, LIU Jiamei, WANG Tao, ZHU Yueqin, YUAN Lingling, CHEN Yangyang. Application of information value model based on symmetrical factors classification method in landslide hazard assessment[J]. Remote Sensing for Land & Resources, 2021, 33(2): 172-181.
[10] WEI Geng, HOU Yuqiao, HAN Jiamei, ZHA Yong. The estimation of PM2.5 mass concentration based on fine-mode aerosol and WRF model[J]. Remote Sensing for Land & Resources, 2021, 33(2): 66-74.
[11] DONG Tiancheng, YANG Xiao, LI Hui, ZHANG Zhi, QI Rui. The extraction of plateau lakes from SAR images based on Faster R-CNN and MorphACWE model[J]. Remote Sensing for Land & Resources, 2021, 33(1): 129-137.
[12] MA Xinping, WU Tao, YU Yuyang. A study of runoff scenario prediction in the upper reaches of Hanjiang River based on SWAT model[J]. Remote Sensing for Land & Resources, 2021, 33(1): 174-182.
[13] CHEN Zhen, XIA Xueqi, CHEN Jianping. A study of remote sensing evaluation model and main controlling factors of land ecological quality:A case study of Guang’an City[J]. Remote Sensing for Land & Resources, 2021, 33(1): 191-198.
[14] FAN Jiazhi, LUO Yu, TAN Shiqi, MA Wen, ZHANG Honghao, LIU Fulai. Accuracy evaluation of the FY-3C/MWRI land surface temperature product in Hunan Province[J]. Remote Sensing for Land & Resources, 2021, 33(1): 249-255.
[15] LI Tianqi, WANG Jianchao, WU Fang, ZHAO Zheng, ZHANG Wenkai. Construction of tidal flat DEM based on multi-algorithm waterline extraction[J]. Remote Sensing for Land & Resources, 2021, 33(1): 38-44.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech