Please wait a minute...
 
Remote Sensing for Land & Resources    2019, Vol. 31 Issue (2) : 231-239     DOI: 10.6046/gtzyyg.2019.02.32
|
Deep drill logging and its alteration zoning features based on hyperspectral core imaging in west of Xiangshan uranium orefield
Chuan ZHANG1,2, Fawang YE1, Qingjun XU2, Junting QIU1
1.National Key Laboratory of Remote Sensing Information and Imagery Analyzing Technology, Beijing Research Institute of Uranium Geology, Beijing 100029, China
2.Faculty of Geosciences and Resources, China University of Geosciences (Beijing), Beijing 100083, China
Download: PDF(6173 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

The west of Xiangshan basin is an important potential area in the search for deep-buried uranium ore deposits in Xiangshan uranium orefield, and its deep alteration zoning remains to be further explored. Imaging hyperspectral core scanning technique provides a new means for revealing deep alteration information. On the basis of the imaging hyperspectral scanning data of deep drilling cores in the Niutoushan area of western Xiangshan, mapping of 5 types of altered minerals was realized by data processing. Then, pixels statistic algorithm was used to obtain the relative content logging curve of each altered mineral. The reliability of the imaging hyperspectral logging was verified by comparing the geological lithology and geophysical logging curves. According to the results of imaging hyperspectral logging of deep drill holes, the formations overlying the basement can be divided into three alteration zones. The main alteration of the first is chloritization, which is located in the upper part, and the second main alterations located in the middle part contain kaolinization, dickitization, and illitization dominated by shortwave illite, and the third main alteration is illitization that is characterized by more long wave and less short wave illite, located in the lower part. Uranium mineralizations in the upper and lower parts of the borehole have distinct features of altered mineral combinations and show that formation environments of illites with different wavelength characteristics are relatively different. The short wave illite tends to form in relatively acidic fluid environment, closely related to uranium mineralization controlled by acid alterations; the long wave illite tends to form in relatively alkaline fluid environment and is not closely related to uranium mineralization. Alteration zoning features of deep drill holes reveal that acidic fluid activity is later than alkaline fluid activity and acts on the latter. Uranium is gradually enriched with deuteric potassium metasomatism and acidic fluid activity. The action of deep fluid on the whole has the evolution characteristics of starting from sodium metasomatism to potassium metasomatism, followed by acid metasomatism with the time.

Keywords Xiangshan      deep drill      core      imaging hyperspectral      altered mineral      uranium mineralization     
:  TP79P627  
Issue Date: 23 May 2019
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Chuan ZHANG
Fawang YE
Qingjun XU
Junting QIU
Cite this article:   
Chuan ZHANG,Fawang YE,Qingjun XU, et al. Deep drill logging and its alteration zoning features based on hyperspectral core imaging in west of Xiangshan uranium orefield[J]. Remote Sensing for Land & Resources, 2019, 31(2): 231-239.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2019.02.32     OR     https://www.gtzyyg.com/EN/Y2019/V31/I2/231
Fig.1  Geology sketch of Xiangshan basin
技术参数 参数值
光谱范围/μm 1.02.5
空间像素数/个 320
横向视场角/(°) 14
瞬时视场角/mrad 0.75
光谱采样带宽/nm 6.25
通道数/个 256
数字化/bit 14
Tab.1  Technical parameters of Hyspex SWIR-320 m-e
Fig.2  Flowchart of mineral mapping based on core hyperspectral images
Fig.3  Endmember spectrum curves of altered minerals in drill cores
蚀变矿物类型 主要光谱特征识别标志
高岭石 2 170 nm和2 205 nm附近双吸收、前浅后深
地开石 2 170 nm和2 205 nm附近双吸收、深度相近
短波伊利石 2 2002 210 nm单吸收、2 3452 355 nm单吸收
长波伊利石 2 2112 220 nm单吸收、2 3452 355 nm单吸收
绿泥石 2 3402 360 nm单吸收、2 265 nm附近单吸收
碳酸盐岩 2 3302 350 nm单吸收
Tab.2  Signature of diagnostic spectrum features of altered minerals in drill cores
Fig.4  Minerals mapping of uranium mineralization core
Fig.5  Comprehensive comparison of deep drill between altered minerals relative content, lithology and geophysical logging
Fig.6  Photos of some drill cores
[1] 李志忠, 杨日红, 党福星 , 等. 高光谱遥感卫星技术及其地质应用[J]. 地质通报, 2009,28(2-3):270-277.
[1] Li Z Z, Yang R H, Dang F X , et al. The hyperspectral remote sensing technology and its application[J]. Geological Bulletin of China, 2009,28(2-3):270-277.
[2] 王润生, 甘甫平, 闫柏琨 , 等. 高光谱矿物填图技术与应用研究[J]. 国土资源遥感, 2010,22(1):1-13.doi: 10.6046/gtzyyg.2010.01.01.
doi: 10.6046/gtzyyg.2010.01.01
[2] Wang R S, Gan F P, Yan B K , et al. Hyperspectral mineral mapping and its application[J]. Remote Sensing for Land and Resources, 2010,22(1):1-13.doi: 10.6046/gtzyyg.2010.01.01.
[3] 王润生, 熊盛青, 聂洪峰 , 等. 遥感地质勘查技术与应用研究[J]. 地质学报, 2011,85(11):1699-1743.
[3] Wang R S, Xiong S Q, Nie H F , et al. Remote sensing technology and its application in geological exploration[J]. Acta Geologica Sinica, 2011,85(11):1699-1743.
[4] Bedini E . Mineral mapping in the Kap Simpson complex,central East Greenland,using HyMap and ASTER remote sensing data[J]. Advances in Space Research, 2011,47(1):60-73.
doi: 10.1016/j.asr.2010.08.021 url: https://linkinghub.elsevier.com/retrieve/pii/S027311771000579X
[5] Molan Y E, Refahi D, Tarashti A H . Mineral mapping in the Maherabad Area,eastern Iran,using the HyMap remote sensing data[J]. International Journal of Applied Earth Observation and Geoinformation, 2014,27:117-127.
doi: 10.1016/j.jag.2013.09.014 url: https://linkinghub.elsevier.com/retrieve/pii/S030324341300113X
[6] Kruse F A . Identification and mapping of minerals in drill core using hyperspectral image analysis of infrared reflectance spectra[J]. International Journal of Remote Sensing, 1996,17(9):1623-1632.
doi: 10.1080/01431169608948728 url: https://www.tandfonline.com/doi/full/10.1080/01431169608948728
[7] Taylor G R . Mineral and lithology mapping of drill core pulps using visible and infrared spectrometry[J]. Natural Resources Research, 2000,9(4):257-268.
doi: 10.1023/A:1011501125239 url: http://link.springer.com/10.1023/A:1011501125239
[8] 王晋年, 李志忠, 张立福 , 等. “光谱地壳”计划——探索新一代矿产勘查技术[J]. 地球信息科学学报, 2012,14(3):344-351.
doi: 10.3724/SP.J.1047.2012.00344
[8] Wang J N, Li Z Z, Zhang L F , et al. “Spectral Crust” project:Research on new mineral exploration technology[J]. Journal of Geo-information Science, 2012,14(3):344-351.
[9] Huntington J, Quigley M, Yang K, et al. A geological overview of HyLogging 18 000 m of core from the Eastern Goldfields of Western Australia [C]//Proceedings 6th International Mining Geology Conference,Darwin:AusIMM, 2006.
[10] Tappert M, Rivard B, Giles D , et al. Automated drill core logging using visible and near-infrared reflectance spectroscopy:A case study from the Olympic Dam IOCG deposit,South Australia[J]. Economic Geology, 2011,106(2):289-296.
doi: 10.2113/econgeo.106.2.289 url: https://pubs.geoscienceworld.org/economicgeology/article/106/2/289-296/128300
[11] Tappert M C, Rivard B, Giles D , et al. The mineral chemistry,near-infrared,and mid-infrared reflectance spectroscopy of phengite from the Olympic Dam IOCG deposit,South Australia[J]. Ore Geo-logy Reviews, 2013,53(3):26-38.
doi: 10.1016/j.oregeorev.2012.12.006 url: https://linkinghub.elsevier.com/retrieve/pii/S0169136812002399
[12] Travers S J , Wilson C J L .Reflectance spectroscopy and alteration assemblages at the Leven Star gold deposit,Victoria,Australia[J]. Australian Journal of Earth Sciences, 2015,62(7):873-882.
doi: 10.1080/08120099.2015.1114525 url: http://www.tandfonline.com/doi/full/10.1080/08120099.2015.1114525
[13] Shi X Z, Aspandiar M, Oldmeadow D . Reflectance spectral characterization and mineralogy of acid sulphate soil in subsurface using hyperspectral data[J]. International Journal of Sediment Research, 2014,29(2):149-158.
doi: 10.1016/S1001-6279(14)60031-7 url: https://linkinghub.elsevier.com/retrieve/pii/S1001627914600317
[14] Hill A J, Mauger A J . HyLogging unconventional petroleum core from the Cooper Basin,South Australia[J]. Australian Journal of Earth Sciences, 2016,63(8):1087-1097.
doi: 10.1080/08120099.2016.1261369 url: https://www.tandfonline.com/doi/full/10.1080/08120099.2016.1261369
[15] 胥燕辉, 田庆久 . 磁铁石英岩型铁矿岩芯光谱编录研究[J]. 国土资源遥感, 2005,17(3):70-73.doi: 10.6046/gtzyyg.2005.03.17.
doi: 10.6046/gtzyyg.2005.03.17
[15] Xu Y H, Tian Q J . A drill core spectral logging study in a magnetite-quartzite type iron deposit[J]. Remote Sensing for Land and Resources, 2005,17(3):70-73.doi: 10.6046/gtzyyg.2005.03.17.
[16] 胥燕辉 . 铁矿岩心高光谱编录初探[J]. 地质找矿论丛, 2006,21(s1):113-117.
[16] Xu Y H . The preliminary study on hyperspectral core logging[J]. Contributions to Geology and Mineral Resources Research, 2006,21(s1):113-117.
[17] 修连存, 郑志忠, 俞正奎 , 等. 近红外光谱仪测定岩石中蚀变矿物方法研究[J]. 岩矿测试, 2009,28(6):519-523.
[17] Xiu L C, Zheng Z Z, Yu Z K , et al. Study on method of measuring altered minerals in rocks with near-infrared spectrometer[J]. Rock and Mineral Analysis, 2009,28(6):519-523.
[18] 李晶, 祁进平, 修连存 , 等. 岩芯光谱扫描仪在紫金山矿产勘查中的应用[J]. 矿物学报, 2013,33(s2):1020-1021.
[18] Li J, Qi J P, Xiu L C , et al. Application of core spectrum scanner in Zijinshan mineral exploration[J]. Acta Mineralogica Sinica, 2013,33(s2):1020-1021.
[19] 张杰林, 黄艳菊, 王俊虎 , 等. 铀矿勘查钻孔岩心高光谱编录及三维矿物填图技术研究[J]. 铀矿地质, 2013,29(4):249-255.
[19] Zhang J L, Huang Y J, Wang J H , et al. Hyperspectral drilling core logging and 3D mineral mapping technology for uranium exploration[J]. Uranium Geology, 2013,29(4):249-255.
[20] Xiu L C, Chen C X, Zheng Z Z , et al. Design and application of core mineral spectrometer[J]. Chinese Optics Letters, 2014,12(8):88-92.
[21] 张万良 . 相山铀矿田矿体形态分类及成因意义[J]. 大地构造与成矿学, 2015,39(5):844-854.
[21] Zhang W L . Orebody morphology and mineralization structure type of Xiangshan uranium field[J]. Geotectonica et Metallogenia, 2015,39(5):844-854.
[22] 林子瑜, 李子颖, 龙期华 , 等. 相山铀矿田三维地质新认识[J]. 铀矿地质, 2013,29(4):199-207.
[22] Lin Z Y, Li Z Y, Long Q H , et al. New geologic cognitions with 3D vision in Xiangshan uranium orefield[J]. Uranium Geology, 2013,29(4):199-207.
[23] 甘甫平, 王润生, 马蔼乃 . 基于特征谱带的高光谱遥感矿物谱系识别[J]. 地学前缘, 2003,10(2):445-454.
[23] Gan F P, Wang R S, Ma A N . Spectral identification tree(SIT) for mineral extraction based on spectral characteristics of minerals[J]. Earth Science Frontiers, 2003,10(2):445-454.
[24] Boardman J W, Kruse F A, Green R O. Mapping target signatures via partial unmixing of AVIRIS data:In Summaries [C]//Fifth JPL Airborne Earth Science Workshop.Pasadena:JPL, 1995: 23-26.
[25] Winter M E. A proof of the N-FINDR algorithm for the automated detection of endmembers in a hyperspectral image [C]//Proceedings of SPIE,Algorithms and Technologies for Multispectral,Hyperspectral,and Ultraspectral Imagery X, 2004,5425:31-41.
[26] Scott K M, Yang K . Exploration and Mining Report 439R Spectral Reflectance Studies of White Micas[R]. Melbourne:Australian Mineral Industries Research Association, 1997, 1-35.
[27] Yang K, Huntington J F, Boardman J W , et al. Mapping hydrothermal alteration in the Comstock mining district,Nevada,using simulated satellite-borne hyperspectral data[J]. Australian Journal of Earth Sciences, 1999,46(6):915-922.
doi: 10.1046/j.1440-0952.1999.00754.x url: http://www.tandfonline.com/doi/abs/10.1046/j.1440-0952.1999.00754.x
[28] 修连存, 郑志忠, 俞正奎 , 等. 近红外光谱分析技术在蚀变矿物鉴定中的应用[J]. 地质学报, 2007,81(11):1584-1590.
[28] Xiu L C, Zheng Z Z, Yu Z K , et al. Mineral analysis technology application with near infrared spectroscopy in identifying alteration mineral[J]. Acta Geologica Sinica, 2007,81(11):1584-1590.
[29] Yang K , Browne P R L,Huntington J F ,et al.Characterising the hydrothermal alteration of the Broadlands-Ohaaki geothermal system,New Zealand,using short-wave infrared spectroscopy[J]. Journal of Volcanology and Geothermal Research, 2001,106(1):53-65.
doi: 10.1016/S0377-0273(00)00264-X url: https://linkinghub.elsevier.com/retrieve/pii/S037702730000264X
[30] 杨志明, 侯增谦, 杨竹森 , 等. 短波红外光谱技术在浅剥蚀斑岩铜矿区勘查中的应用——以西藏念村矿区为例[J]. 矿床地质, 2012,31(4):699-717.
[30] Yang Z M, Hou Z Q, Yang Z S , et al. Application of short wavelength infrared (SWIR) technique in exploration of poorly eroded porphyry Cu district:A case study of Niancun ore district,Tibet[J]. Mineral Deposits, 2012,31(4):699-717.
[31] Zhang X Y, Li P J . Lithological mapping from hyperspectral data by improved use of spectral angle mapper[J]. International Journal of Applied Earth Observation and Geoinformation, 2014,31(5):95-109.
doi: 10.1016/j.jag.2014.03.007 url: https://linkinghub.elsevier.com/retrieve/pii/S0303243414000579
[32] 张川, 叶发旺, 姚佳蕾 , 等. 成像光谱钻孔岩芯编录的实现方法[J]. 遥感信息, 2017,32(5):69-74.
[32] Zhang C, Ye F W, Yao J L , et al. Implementation method of drill core logging based on imaging spectrometer[J]. Remote Sensing Information, 2017,32(5):69-74.
[33] 郭娜, 黄一入, 郑龙 , 等. 高硫-低硫化浅成低温热液矿床的短波红外矿物分布特征及找矿模型——以西藏铁格隆南(荣那矿段)、斯弄多矿床为例[J]. 地球学报, 2017,38(5):767-778.
[33] Guo N, Huang Y R, Zheng L , et al. Alteration zoning and prospecting model of epithermal deposit revealed by shortwave infrared technique:A case study of Tiegelongnan and Sinongduo Deposits[J]. Acta Geoscientia Sinica, 2017,38(5):767-778.
[34] Harraden C L, Mcnulty B A, Gregory M J , et al. Shortwave infrared spectral analysis of hydrothermal alteration associated with the Pebble Porphyry Copper-Gold-Molybdnum deposit,Iliamna,Alaska[J]. Economic Geology, 2013,108(3):483-494.
doi: 10.2113/econgeo.108.3.483 url: https://pubs.geoscienceworld.org/economicgeology/article/108/3/483-494/128482
[35] Herrmann W, Blake M, Doyle M , et al. Short wavelength infrared (SWIR) spectral analysis of hydrothermal alteration zones associated with base metal sulfide deposits at Rosebery and Western Tharsis,Tasmania,and Highway-Reward,Queensland[J]. Economic Geology, 2001,96(5):939-955.
[36] Yang K, Lian C, Huntington J F , et al. Infrared spectral reflectance characterization of the hydrothermal alteration at the Tuwu Cu-Au deposit,Xinjiang,China[J]. Mineralium Deposita, 2005,40(3):324-336.
doi: 10.1007/s00126-005-0479-7 url: http://link.springer.com/10.1007/s00126-005-0479-7
[37] 陈光远, 孙岱生, 殷辉安 . 成因矿物学与找矿矿物学[M]. 重庆: 重庆出版社, 1988: 435-486.
[37] Chen G Y, Sun D S, Yin H A. Genetic Mineralogy and Prospecting Mineralogy[M]. Chongqing: Chongqing Press, 1988: 435-486.
[38] 林锦荣, 胡志华, 谢国发 , 等. 相山铀矿田深部找矿标志及找矿方向[J]. 铀矿地质, 2013,29(6):321-327.
[38] Lin J R, Hu Z H, Xie G F , et al. The indicators and direction for deep exploration in Xiangshan uranium ore field[J]. Uranium Geo-logy, 2013,29(6):321-327.
[39] 叶天竺, 薛建玲 . 金属矿床深部找矿中的地质研究[J]. 中国地质, 2007,34(5):855-869.
[39] Ye T Z, Xue J L . Geological study in search of metallic ore deposits at depth[J]. Geology in China, 2007,34(5):855-869.
[40] 杜乐天 . 碱交代岩研究的重大成因意义[J]. 矿床地质, 2002,21(s1):953-958.
[40] Du L T . The important significance of alkali-metasomatic rock studies[J]. Mineral Deposits, 2002,21(s1):953-958.
[41] 胡宝群, 王倩, 邱林飞 , 等. 相山矿田邹家山铀矿床碱交代矿化蚀变岩地球化学[J]. 大地构造与成矿学, 2016,40(2):377-385.
[41] Hu B Q, Wang Q, Qiu L F , et al. Geochemistry of alkali metasomatized rocks of Zoujiashan uranium ore-deposit in Xiangshan ore-field[J]. Geotectonica et Metallogenia, 2016,40(2):377-385.
[1] WANG Qian, REN Guangli. Application of hyperspectral remote sensing data-based anomaly extraction in copper-gold prospecting in the Solake area in the Altyn metallogenic belt, Xinjiang[J]. Remote Sensing for Natural Resources, 2022, 34(1): 277-285.
[2] WANG Ruijun, ZHANG Chunlei, SUN Yongbin, WANG Shen, DONG Shuangfa, WANG Yongjun, YAN Bokun. Application of hyperspectral spectroscopy to constructing polymetallic prospecting model in Hongshan, Gansu Province[J]. Remote Sensing for Land & Resources, 2020, 32(3): 222-231.
[3] Qinglin TIAN, Wei PAN, Yao LI, Chuan ZHANG, Xuejiao CHEN, Zhangfa YU. Extraction of alteration information from hyperspectral core imaging based on wavelet packet transform and weight spectral angle mapper[J]. Remote Sensing for Land & Resources, 2019, 31(4): 41-46.
[4] Li CHEN, Yu LI, Xian ZHANG. Statistic analysis on basic information and highly cited frequency of paper published at Remote Sensing for Land and Resources[J]. Remote Sensing for Land & Resources, 2018, 30(4): 13-19.
[5] MENG Yaping, DU Peijun, LI Erzhu, ZHANG Hao, XU Zhigang. Data preprocessing methods of domestic core spectral scanner CMS350A[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(4): 73-81.
[6] ZHANG Yuan, ZHANG Jielin, ZHAO Xuesheng, YUAN Bo. Extraction of mineral alteration information from core hyperspectral images based on weight of absorption peak[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(2): 154-159.
[7] YE Fa-wang, LIU De-chang. Application of High Resolution Satellite Remote Sensing Technology in Identification and Analysis of the Uranium Mineralization Bleached Alteration[J]. REMOTE SENSING FOR LAND & RESOURCES, 2012, 24(4): 117-123.
[8] ZHAO Yu-Ling, YANG Jin-Zhong. THE REMOTE SENSING DYNAMIC MONITORING OF THE SHORELINE AND THE TIDAL BANK IN XIANGSHAN HARBOR[J]. REMOTE SENSING FOR LAND & RESOURCES, 2007, 19(4): 114-117.
[9] ZHANG Wan-Liang, LIU De-Chang, LI Zi-Ying, ZHANG Jing-Bo. A REMOTE SENSING IMAGE TECTONIC ANALYSIS OF
THE XIANGSHAN URANIUM ORE FIELD, JIANGXI PROVINCE
[J]. REMOTE SENSING FOR LAND & RESOURCES, 2005, 17(3): 52-56.
[10] XU Yan-Hui, TIAN Qing-Jiu. A DRILL CORE SPECTRAL LOGGING STUDY IN
A MAGNETITE-QUARTZITE TYPE IRON DEPOSIT
[J]. REMOTE SENSING FOR LAND & RESOURCES, 2005, 17(3): 70-73.
[11] KAN Ming-Zhe, TIAN Qing-Jiu, ZHANG Zong-Gui. THE EXTRACTION OF HYMAP HYPERSPECTRAL REMOTE
SENSING INFORMATION FROM THREE TYPICAL ALTERED
MINERALS IN HAMI AREA, XINJIANG
[J]. REMOTE SENSING FOR LAND & RESOURCES, 2005, 17(1): 37-40.
[12] PAN Wei-hua, XU Han-qiu . A STUDY OF URBAN SPATIAL EXPANSION OF QUANZHOU CITY ON THE BASIS OF REMOTE SENSING TECHNOLOGY AND URBANIZATION CORE ANALYSIS[J]. REMOTE SENSING FOR LAND & RESOURCES, 2004, 16(4): 36-40.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech