Please wait a minute...
Remote Sensing for Land & Resources    2020, Vol. 32 Issue (3) : 222-231     DOI: 10.6046/gtzyyg.2020.03.29
Application of hyperspectral spectroscopy to constructing polymetallic prospecting model in Hongshan, Gansu Province
WANG Ruijun1(), ZHANG Chunlei1, SUN Yongbin1, WANG Shen1, DONG Shuangfa1, WANG Yongjun1, YAN Bokun2
1. Airborne Survey and Remote Sensing Center of Nuclear Industy, Shijiazhuang 050002, China
2. China Aero Geophysical Survey and Remote Sensing Center for Natural Resources, Beijing 100083, China
Download: PDF(10903 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    

In order to further study and explore the application effect and potential of hyperspectral remote sensing technology in geological prospecting, the authors used the aerial and ground hyperspectral remote sensing data of Hongshan region in Gansu Province to analyze the distribution characteristics of altered minerals or altered anomaly information, summarized the distribution law of altered anomaly of ore-forming geological bodies, and proposed the construction idea of ore-finding positioning model of ore-forming geological environment elements based on alteration information characteristics of known typical deposits, ore-controlling elements and alteration information law of ore-forming geological bodies. The authors gradually revealed the metallogenic geological environment expressed by “minerals-landmark minerals-altered minerals-prospecting anomalies”, and constructed the prospecting positioning model of typical deposits and the comprehensive prospecting positioning model of altered minerals and geological background. Guided by the ore-finding positioning model and combined with geological background and ore-forming laws, the authors applied different models to delineate 4 polymetallic prospective areas. After field investigation, better clues of polymetallic mineralization were found. Practice shows that, by analyzing the intrinsic relationship between hyperspectral alteration information and ore-forming laws, more accurate information can be provided for ore prospecting, and the same kind of polymetallic ore prospecting work can be effectively guided.

Keywords hyperspectral remote sensing      altered mineral assemblage      prospecting positioning model      prospecting analysis      Hongshan      Gansu Province     
:  P612  
Issue Date: 09 October 2020
E-mail this article
E-mail Alert
Articles by authors
Ruijun WANG
Chunlei ZHANG
Yongbin SUN
Shuangfa DONG
Yongjun WANG
Bokun YAN
Cite this article:   
Ruijun WANG,Chunlei ZHANG,Yongbin SUN, et al. Application of hyperspectral spectroscopy to constructing polymetallic prospecting model in Hongshan, Gansu Province[J]. Remote Sensing for Land & Resources, 2020, 32(3): 222-231.
URL:     OR
Fig.1  Simplified geological map of Hongshan area
波段 波长范
可见光(VIS) 0.45~0.89 15~16 15 32 1 000:1以上
近红外(NIR) 0.89~1.35 15~16 15 32 1 000:1以上
短波红外1(SWIR1) 1.40~1.80 15~16 13 32 500:1以上
短波红外2(SWIR2) 1.95~2.48 18~20 17 32 500:1以上
Tab.1  HyMap aerial imaging spectrum system main technical parameter table
Fig.2  Construction of prospecting positioning models
Fig.3  Distribution of high-spectral altered minerals in Hongshan area
Fig.4  Comprehensive information of typical iron deposits
矿床类型 典型矿床找矿定位模型 蚀变矿物与地质背景综合找矿定位模型
沉积变质改造型铁矿床 构造-热液脉型多金属矿床 石英脉型多金属矿床 构造蚀变岩型多金属矿床
地质背景 控矿构造为向西倾伏的罗雅楚山背斜构造; 成矿部位为背斜转折端及北翼; 青白口系大豁落山群第四岩组(Qbd4)为赋矿层位 中酸性岩体、岩脉发育地段,NW向、NWW向或其次级断裂发育地段,外围围岩为成矿有利地质体 酸性岩体、岩脉发育地段,NWW向、近EW向或其次级断裂发育地段,石英脉呈NWW向展布,外围围岩为成矿有利地质体 NW向或其次级断裂发育地段,外围围岩为成矿有利地质体
蚀变特征 围岩蚀变: 黑云母化、阳起石化、透闪石—透辉石化、绿泥石化、绢云母化、碳酸盐化、硅化等; 近矿蚀变: 黑云母化、阳起石化、透闪石—透辉石化等 褐铁矿化、绢云母化、硅化呈脉状或条带状展布 褐铁矿化、硅化、碳酸盐化、绢云母化,蚀变多呈团块状叠加分布 褐铁矿化、赤铁矿化、硅化、绿泥石化、绢云母化、黄钾铁钒化等,地表形成带状褪色蚀变带
高光谱矿物信息特征 近矿蚀变矿物: 褐铁矿、白云石、角闪石、黑云母、中铝绢云母、方解石、绿泥石、绿帘石等; 矿体蚀变矿物: 透闪石、透辉石、阳起石、褐铁矿、白云石、角闪石等 褐铁矿、赤铁矿、绢云母、角闪石、绿帘石、白云石等。矿物信息种类多、丰度高、延伸性好、叠加程度高 褐铁矿、绢云母、绿泥石、白云石等。矿物信息种类较多、丰度较高、延伸性好、叠加程度较高 褐铁矿、绿帘石、绿泥石、绢云母、角闪石等。矿物信息种类多、丰度较高、叠加程度较高
Tab.2  List of prospecting positioning model in Hongshan area
Fig.5  Distribution of mineral prospecting prediction area in Hongshan area
Fig.6  Field photos of Magnet mineralization newly found in field verification in KY01 prospecting prediction area
Fig.7  Distribution of mineralization alteration on surface of tectonic alteration zone found by field verification in SY01 area
Fig.8  Field photos of alteration in prospecting prediction area
[1] 王润生, 熊盛青, 聂洪峰, 等. 遥感地质勘查技术与应用研究[J]. 地质学报, 2011,85(11):1699-1743.
[1] Wang R S, Xiong S Q, Nie H F, et al. Remote sensing technology and its application in geological exploration[J]. Acta Geologica Sinica, 2011,85(11):1699-1743.
[2] 王润生, 甘甫平, 闫柏琨, 等. 高光谱矿物填图技术与应用研究[J]. 国土资源遥感, 2010,22(1):1-13.doi: 10.6046/gtzyyg.2010.01.01.
doi: 10.6046/gtzyyg.2010.01.01 url:
[2] Wang R S, Gan F P, Yan B K, et al. Hyperspectral mineral map-ping and its application[J]. Remote Sensing for Land and Re-sources, 2010,22(1):1-13.doi: 10.6046/gtzyyg.2010.01.01.
[3] 姚本佐, 何芳. 空谱特征分层融合的高光谱图像特征提取[J]. 国土资源遥感, 2019,31(3):59-64.doi: 10.6046/gtzyyg.2019.03.08.
[3] Yao B Z, He F. Spatial and spectral feature hierarchical fusion for hyperspectral image feature extraction[J]. Remote Sensing for Land and Resources, 2019,31(3):59-64.doi: 10.6046/gtzyyg.2019.03.08.
[4] 杨思睿, 薛朝辉, 张玲, 等. 高光谱与LiDAR数据融合研究——以黑河中游张掖绿洲农业区精细作物分类为例[J]. 国土资源遥感, 2018,30(4):33-40.doi: 10.6046/gtzyyg.2018.04.06.
[4] Yang S R, Xue Z H, Zhang L, et al. Fusion of hyperspectral and LiDAR data:A case study for refined crop classification in agricultural region of Zhangye Oasis in the middle reaches of Heihe River[J]. Remote Sensing for Land and Resources, 2018,30(4):33-40.doi: 10.6046/gtzyyg.2018.04.06.
[5] Clark R N, Swayze G A, et al. Imaging spectroscopy:Earth and planetary remote sensing with the USGS tetracorder and expert systems[J]. Geophysical Research, 2003,108(e12):5131.
[6] Berger B R, V V King T, Morath L C, et al. Utility of high-altitude infrared spectral data in mineral exploration:Application to northern Patagonia Mountains,Arizona[J]. Economic Geology, 2003,98(5):1003-1018.
doi: 10.2113/gsecongeo.98.5.1003 url:
[7] Kruse F A, Hauff P L. Identification of illite polytype zoning in disseminated gold deposits using reflectance spectroscopy and X-ray diffraction-potential for mapping with imaging spectrometer[J]. IEEE Trans actions on Geoscience Remote Sensing, 1991,29(1):101-104.
[8] Kruse F A, Lefkoff A B, Boardman J W, et al. The spectral image processing system(SIPS)-interactive visualization and analysis of imaging spectrometer data[J]. Remote Sensing of Environment, 1993,44:145-163.
doi: 10.1016/0034-4257(93)90013-N url:
[9] 甘甫平, 王润生, 马蔼乃. 基于特征谱带的高光谱遥感矿物谱系识别[J]. 地学前缘, 2003,10(2):445-454.
[9] Gan F P, Wang R S, Ma A N. Spectral identification of high-spectral remote sensing minerals based on characteristic band[J]. Earth Science Frontiers, 2003,10(2):445-454.
[10] Bierwirth P, Huston D, Blewett R. Hyperspectral mapping of mineral assemblages associated with gold mineralization in the central Pilbara[J]. Western Australia Economic Geology, 2002,97:819-826.
[11] Cudahy T J, Okada K, Brauhart C. Targeting VMS-style Zn mineralization at Panorama,Australia,using airborne hyperspectral VNIR-SWIR HyMap data [C]//14th Environmental Research Institute of Michigan.International Conference on Applied Geologic Remote Sensing.Las Vegas. 2000: 395-402.
[12] Brown A J, Cudahy T J, Walter M R. Hydrothermal alteration at the Panorama Formation,North Pole Dome,Pilbara Craton,Western Australia[J]. Precambrian Research, 2006,151:211-223.
doi: 10.1016/j.precamres.2006.08.014 url:
[13] Bierwirth P, Huston D, Blewett R. Hyperspectral mapping of mineral assemblages associated with gold mineralization in the central Pilbara,Western Australia[J]. Economic Geology, 2002,97:819-826.
doi: 10.2113/gsecongeo.97.4.819 url:
[14] Bell J H, Bowen B B, Martini B A. Imaging spectroscopy of jarosite cement in the Jurassic Navajo Sandstone[J]. Remote Sensing of Environment, 2010,114:2259-2270.
doi: 10.1016/j.rse.2010.05.002 url:
[15] Bedini E, van der Meer F, van Ruitenbeek F. Use of HyMap imaging spectrometer data to map mineralogy in the Rodalquilar caldera,southeast Spain[J] International Journal of Remote Sensing, 2009,30(2):327-348.
doi: 10.1080/01431160802282854 url:
[16] 任广利, 杨军录, 杨敏, 等. 高光谱遥感异常提取在甘肃北山金滩子——明金沟地区成矿预测中的应用[J]. 大地构造与成矿学, 2013,37(4):765-776.
[16] Ren G L, Yang J L, Yang M, et al. Application of hyperspectral remote sensing anomaly information on metallogenic prediction in the Jintanzi-Mingjingou area of Beishan,Gansu[J]. Geotectonica et Metallogenia, 2013,37(4):765-776.
[17] 李文渊, 董福辰, 姜寒冰, 等. 西北地区重要金属矿产成矿特征及其找矿潜力[J]. 西北地质, 2006,39(2):1-15.
[17] Li W Y, Dong F C, Jiang H B, et al. The northwest important metal mineral metallogenic characteristics and ore prospecting potential[J]. Northwestern Geology, 2006,39(2):1-15.
[18] 刘德长, 邱骏挺, 田丰, 等. 区域控矿断裂带的航空高光谱遥感技术研究——以黑石山-花牛山深大断裂带为例[J]. 地质与勘探, 2015,51(2):366-375.
[18] Liu D C, Qiu J T, Tian F, et al. Application of airborne hyper-spectrum remotesensing to mapping of ore-control faults:A case study of the Heishishan-Huaniushan fault[J]. Geology and Exploration, 2015,51(2):366-375.
[19] 张发荣, 牛卯胜. 甘肃北山地区成矿带划分及基本特征[J]. 甘肃地质学报, 2003,12(1):50-57.
[19] Zhang F R, Niu M S. Divisions and basic features of the metallogenic belts in Beishan area of Gansu Province[J]. Acta Geology Gansu, 2003,12(1):50-57.
[20] 王瑞军, 李名松, 汪冰, 等. 青海省小干沟金矿区蚀变矿物光谱特征研究及应用[J]. 黄金, 2014,35(5):10-15.
[20] Wang R J, Li M S, Wang B, et al. Study on spectrogram of altered mineral assemblages and its application in Xiaogangou gold deposit,Qinghai Province[J]. Gold, 2014,35(5):10-15.
[21] 孙雨, 赵英俊, 李瀚波, 等. 青海省都兰县阿斯哈金矿区HySpex高光谱矿物填图及其找矿意义[J]. 地质学报, 2015,89(1):195-203.
[21] Sun Y, Zhao Y J, Li H B, et al. HySpex hyperspectral mineral map-ping of Asiha gold ore district in Dulan County,Qinghai Province and its prospecting implications[J]. Acta Geologica Sinica, 2015,89(1):195-203.
doi: 10.1111/acgs.2015.89.issue-s1 url:
[22] 李志忠, 杨日红, 党福星, 等. 高光谱遥感卫星技术及其地质应用[J]. 地质通报, 2009,28(2/3):270-277.
[22] Li Z Z, Yang R H, Dang F X, et al. The hyperspectral remote sensing technology and its application[J]. Geological Bulletin of China, 2009,28(2/3):270-277.
[23] 杜小弟, 唐跃, 刘德长, 等. 航空高光谱探测技术在准噶尔盆地东部地区油气调查中的应用[J]. 中国地质, 2015,42(1):275-287.
[23] Du X D, Tang Y, Liu D C, et al. The application of aerial hyper-spectral technology to the geological survey for oil and gas in the East Junggar basin[J]. Geology in China, 2015,42(1):275-287.
[24] 姚佛军, 杨建民, 张玉君, 等. 三种不同类型矿床分类型蚀变遥感异常提取及其应用[J]. 岩石学报, 2009,25(4):971-976.
[24] Yao F J, Yang J M, Zhang Y J, et al. Extraction of remote sensing alteration anomalies of three types of ore deposits and its applica-tion[J]. Acta Petrologica Sinica, 2009,25(4):971-976.
[25] 张宗贵, 王润生. 基于谱学的成像光谱遥感技术发展与应用[J]. 国土资源遥感, 2000,12(3):16-37.doi: 10.6046/gtzyyg.2000.03.03.
doi: 10.6046/gtzyyg.2000.03.03 url:
[25] Zhang Z G, Wang R S. Development and application of imaging spectral remote sensing technology based on spectroscopy[J]. Remote sensing of land resources, 2000,12(3):16-37.doi: 10.6046/gtzyyg.2000.03.03.
[26] 任广利, 杨敏, 李健强, 等. 高光谱蚀变信息在金矿找矿预测中的应用研究——以北山方山口金矿线索为例[J]. 国土资源遥感, 2017,29(3):182-190.doi: 10.6046/gtzyyg.2017.03.27.
[26] Ren G L, Yang M, Li J Q, et al. Application of hyperspectral alteration information to gold prospecting:A case study of Fangshankou area,Beishan[J]. Remote Sensing for Land and Resources, 2017,29(3):182-190.doi: 10.6046/gtzyyg.2017.03.27.
[27] 左国朝, 刘义科, 李绍雄. 甘肃北山地区红山铁矿床成因及成矿机制[J]. 甘肃地质, 2010,19(3):9-18.
[27] Zuo G C, Liu Y K, Li S X. Metallogenesis and mechanism of HongShan iron deposit in Beishan region of Gansu Province[J]. Gansu Geology, 2010,19(3):9-18.
[28] 赵建仓, 王朝晖. 甘肃北山地区红山铁矿地质特征研究及成矿条件分析[J]. 甘肃科技, 2013,29(5):21-25.
[28] Zhao J C, Wang Z H. Study on geological characteristics and metallogenic conditions of Hongshan iron mine in Beishan area of Gansu Province[J]. Gansu Science and Technology, 2013,29(5):21-25.
[1] WANG Qian, REN Guangli. Application of hyperspectral remote sensing data-based anomaly extraction in copper-gold prospecting in the Solake area in the Altyn metallogenic belt, Xinjiang[J]. Remote Sensing for Natural Resources, 2022, 34(1): 277-285.
[2] GAO Wenlong, ZHANG Shengwei, LIN Xi, LUO Meng, REN Zhaoyi. The remote sensing-based estimation and spatial-temporal dynamic analysis of SOM in coal mining[J]. Remote Sensing for Natural Resources, 2021, 33(4): 235-242.
[3] JIANG Yanan, ZHANG Xin, ZHANG Chunlei, ZHONG Chengcheng, ZHAO Junfang. Classification of remote sensing images based on multi-scale feature fusion using local binary patterns[J]. Remote Sensing for Natural Resources, 2021, 33(3): 36-44.
[4] ZANG Chuankai, SHEN Fang, YANG Zhengdong. Aquatic environmental monitoring of inland waters based on UAV hyperspectral remote sensing[J]. Remote Sensing for Natural Resources, 2021, 33(3): 45-53.
[5] HU Xinyu, XU Zhanghua, CHEN Wenhui, CHEN Qiuxia, WANG Lin, LIU Hui, LIU Zhicai. Construction and application effect of normalized shadow vegetation index NSVI based on PROBA/CHRIS image[J]. Remote Sensing for Land & Resources, 2021, 33(2): 55-65.
[6] Donghui ZHANG, Yingjun ZHAO, Kai QIN. Design and construction of the typical ground target spectral information system[J]. Remote Sensing for Land & Resources, 2018, 30(4): 206-211.
[7] Ruijun WANG, Bokun YAN, Mingsong LI, Shuangfa DONG, Yongbin SUN, Bing WANG. Remote sensing interpretation of important ore-controlling geological units in Hongshan Region of Gansu Province using GF-1 image and its application[J]. Remote Sensing for Land & Resources, 2018, 30(2): 162-170.
[8] Jing CUI, Xinfeng DONG, Rui DING, Shimin ZHANG, Conghe WANG, Hengxin LU, Yanyun SUN. Stratigraphic division of loess along loess profile based on hyperspectral remote sensing[J]. Remote Sensing for Land & Resources, 2018, 30(2): 202-207.
[9] REN Guangli, YANG Min, LI Jianqiang, GAO Ting, LIANG Nan, YI Huan, YANG Junlu. Application of hyperspectral alteration information to gold prospecting: A case study of Fangshankou area,Beishan[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(3): 182-190.
[10] SU Hongjun, LIU Hao. A novel dynamic classifier selection algorithm using spatial-spectral information for hyperspectral classification[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(2): 15-21.
[11] LIN Na, YANG Wunian, WANG Bin. Pixel un-mixing for hyperspectral remote sensing image based on kernel method[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(1): 14-20.
[12] HE Hao, SHEN Yonglin, LIU Xiuguo, MA Li. Spatial-spectral constrained graph-based semi-supervised classification for hyperspectral image[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(3): 31-36.
[13] CHAI Ying, RUAN Renzong, CHAI Guowu, FU Qiaoni. Species identification of wetland vegetation based on spectral characteristics[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(3): 86-90.
[14] DAI Xiaoai, JIA Hujun, ZHANG Xiaoxue, WU Fenfang, GUO Shouheng, YANG Wunian, YANG Ye. Identification of hyperspectral features for subalpine typical vegetation in the upper reaches of the Minjiang River[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(3): 174-180.
[15] CHEN Shulin, BI Yinli. Application of remote sensing technology to microbial reclamation[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(3): 16-23.
Full text



Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech