Please wait a minute...
 
Remote Sensing for Land & Resources    2019, Vol. 31 Issue (4) : 41-46     DOI: 10.6046/gtzyyg.2019.04.06
|
Extraction of alteration information from hyperspectral core imaging based on wavelet packet transform and weight spectral angle mapper
Qinglin TIAN1, Wei PAN1, Yao LI2, Chuan ZHANG1, Xuejiao CHEN1, Zhangfa YU1
1. National Key Laboratory of Remote Sensing Information and Image Analysis Technology, Beijing Research Institute of Uranium Geology, Beijing 100029, China
2. Zachry Department of Civil Engineering, Texas A&M University, Texas 77843, USA
Download: PDF(1665 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Hyperspectral data are characterized by many bands, but the strong correlation between the adjacent bands makes it redundant and ineffective, which becomes a challenge for information extraction. To solve this problem, this paper proposes a method combining wavelet packet transform and weight SAM. First, radiometric calibration, reflectivity calculation and wavelet denoising are conducted on the raw hyperspectral data. Second, by using daubechies4 as the wavelet basis, the target and reference spectra are both processed with an 8-layer wavelet packet decomposition, and information entropy feature vector is based on the decomposition coefficient to characterize the features of the raw spectra. Third, efforts are made to find the feature range, in which the difference in information entropy feature vector between the target and reference spectra is huge, and a weight in this range is set. Finally, alteration minerals are mapped according to the SAM principle. In this study, experiments were conducted to testify the feasibility and effectiveness of the method by using the HySpex SWIR hyperspectral core data of a volcanic type uranium deposit in southern China. The results indicate that the new algorithm can efficiently characterize the raw spectral information by using the wavelet packet information entropy feature vector. Furthermore, the local characteristic information can be extruded by setting difference feature range, and different minerals can be more easily distinguished by this method with a total classification accuracy of 75.33% and a kappa coefficient of 0.706 3. The method proposed by the authors performs better than the traditional SAM algorithm and has a great application potential.

Keywords wavelet packet      spectral angle mapper (SAM)      hyperspectral core      alteration information     
:  TP751  
Issue Date: 03 December 2019
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Qinglin TIAN
Wei PAN
Yao LI
Chuan ZHANG
Xuejiao CHEN
Zhangfa YU
Cite this article:   
Qinglin TIAN,Wei PAN,Yao LI, et al. Extraction of alteration information from hyperspectral core imaging based on wavelet packet transform and weight spectral angle mapper[J]. Remote Sensing for Land & Resources, 2019, 31(4): 41-46.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2019.04.06     OR     https://www.gtzyyg.com/EN/Y2019/V31/I4/41
技术指标参数 参数值
传感器型号 SWIR
光谱范围/μm 1.0~2.5
空间像素数/个 320
横向视场角/(°) 14
瞬时视场角/mrad 0.75
光谱采样带宽/nm 6.25
通道数/个 256
数字化/bit 14
最大扫描帧频/fps 100
Tab.1  Technical specifications of HySpex SWIR sensor
Fig.1  Endmember spectrum curves of altered minerals
Fig.2  Partial subcomponent entropy of four kinds of minerals
端元光谱 光谱矢量夹角余弦值 信息熵矢量夹角余弦值
高岭石/绿泥石 0.995 0 0.599 4
高岭石/地开石 0.997 4 0.946 0
高岭石/伊利石 0.997 6 0.810 4
绿泥石/地开石 0.989 4 0.614 2
绿泥石/伊利石 0.996 4 0.911 4
地开石/伊利石 0.997 2 0.863 0
Tab.2  Cosine for angles of spectral vectors and information entropy vectors
Fig.3  Extraction results of alteration information using HySpex drill core hyperspectral data
分类方法 总体精度/% Kappa
传统SAM 71.51 0.667 8
本文方法 75.33 0.706 3
Tab.3  Classification accuracy statistics of different matching methods
[1] 杜培军, 夏俊士, 薛朝辉 , 等. 高光谱遥感影像分类研究进展[J]. 遥感学报, 2016,20(2):236-256.
[1] Du P J, Xia J S, Xue Z H , et al. Review of hyperspectral remote sensing image classification[J]. Journal of Remote Sensing, 2016,20(2):236-256.
[2] 杨达昌, 陈洁, 高子弘 , 等. 天宫一号高光谱数据烃类微渗漏信息提取[J]. 国土资源遥感, 2018,30(2):107-113.doi: 10.6046/gtzyyg.2018.02.15.
[2] Yang D C, Chen J, Gao Z H , et al. Extraction of hydrocarbon micro-seepage information based on TG-1 hyperspectral data[J]. Remote Sensing for Land and Resources, 2018,30(2):107-113.doi: 10.6046/gtzyyg.2018.02.15.
[3] 钮宇斌, 王斌 . 一种新的用于高光谱图像小目标探测的目标光谱学习算法[J]. 红外与毫米波学报, 2017,36(4):471-480.
url: http://www.opticsjournal.net/Articles/Abstract?aid=OJ171012000071SpVrYu
[3] Niu Y B, Wang B . A novel target spectrum learning algorithm for small target detection in hyperspectral imagery[J]. Journal of Infrared and Millimeter Waves, 2017,36(4):471-480.
[4] Mulla D J . Twenty five years of remote sensing in precision agriculture:Key advances and remaining knowledge gaps[J]. Biosystems Engineering, 2013,114(4):358-371.
[5] Li X K, Wu T X, Liu K , et al. Evaluation of the Chinese fine spatial resolution hyperspectral satellite TianGong-1 in urban land-cover classification[J]. Remote Sensing, 2016,8(5):438-454.
[6] 刘凯, 张立福, 杨杭 , 等. 面向对象分析的非结构化背景目标高光谱探测方法研究[J]. 光谱学与光谱分析, 2013,33(6):1653-1657.
url: http://www.opticsjournal.net/Articles/Abstract?aid=OJ1306070001074z7C9F
[6] Liu K, Zhang L F, Yang H , et al. Hyperspectral unstructured background target detection approach based on object-oriented analysis[J]. Spectroscopy and Spectral Analysis, 2013,33(6):1653-1657.
[7] Bedini E . Mineral mapping in the Kap Simpson complex,central East Greenland,using HyMap and ASTER remote sensing data[J]. Advances in Space Research, 2011,47(1):60-73.
[8] 姚佳蕾, 张川, 叶发旺 , 等. 相山邹家山铀矿区某钻孔岩心高光谱蚀变矿物特征及地质意义[J]. 铀矿地质, 2017,33(6):376-380.
[8] Yao J L, Zhang C, Ye F W , et al. Hyperspectral alteration mineral feature and its geological significance of drill core in Zoujiashan uranium deposit of Xiangshan orefield[J]. Uranium Geology, 2017,33(6):376-380.
[9] Hamza M H , Al-Thubaiti A S,Dhieb M,et al.Dasymetric mapping as a tool to access the spatial distribution of population in Jeddah City (Kingdom of Saudi Arabia)[J]. Current Urban Studies, 2016,4(4):329-342.
[10] 何中海, 何彬彬 . 基于权重光谱角制图的高光谱矿物填图方法[J]. 光谱学与光谱分析, 2011,31(8):2200-2204.
url: http://www.opticsjournal.net/Articles/Abstract?aid=OJ1108290001302y5A8D
[10] He Z H, He B B . Weight spectral angle mapper (WSAM) method for hyperspectral mineral mapping[J]. Spectroscopy and Spectral Analysis, 2011,31(8):2200-2204.
[11] 张媛, 张杰林, 赵学胜 , 等. 基于峰值权重的岩心高光谱矿化蚀变信息提取[J]. 国土资源遥感, 2015,27(2):154-159.doi: 10.6046/gtzyyg.2015.02.24.
doi: 10.6046/gtzyyg.2015.02.24
[11] Zhang Y, Zhang J L, Zhao X S , et al. Extraction of mineral alteration information from core hyperspectral images based on weight of absorption peak[J]. Remote Sensing for Land and Resources, 2015,27(2):154-159.doi: 10.6046/gtzyyg.2015.02.24.
[12] 吕银亮, 李少昆, 王克如 , 等. 基于改进光谱角算法的小麦产量监测研究[J]. 新疆农业科学, 2011,48(1):1-5.
[12] Lyu Y L, Li S K, Wang K R , et al. Studies monitoring yield of winter wheat with a modified spectral angle algorithm[J]. Xinjiang Agricultural Sciences, 2011,48(1):1-5.
[13] Seo Y, Kim S . River stage forecasting using wavelet packet decomposition and data-driven models[J]. Procedia Engineering, 2016,154:1225-1230.
[14] Zhang X Y, Li P J . Lithological mapping from hyperspectral data by improved use of spectral angle mapper[J]. International Journal of Applied Earth Observation and Geoinformation, 2014,31(5):95-109.
[15] 岑奕, 张艮中, 张立福 , 等. 地物光谱不确定性及光谱角制图算法适用性研究[J]. 光谱学与光谱分析, 2015,35(10):2841-2845.
url: http://www.opticsjournal.net/Articles/Abstract?aid=OJ160202000184OkRnTq
[15] Cen Y, Zhang G Z, Zhang L F , et al. Spectral uncertainty of terrestrial objects and the applicability of spectral angle mapper algorithm[J]. Spectroscopy and Spectral Analysis, 2015,35(10):2841-2845.
[16] 田茂杰 . 基于Hyperion与SASI数据的矿物填图方法对比研究[D].北京:中国地质大学( 北京), 2017.
[16] Tian M J . Comparative Study of Mineral Mapping Methods Based on Hyperion and SASI Data[D].Beijing:China University of Geosciences ( Beijing), 2017.
[17] Sankar A S, Nair S S, Dharan V S , et al. Wavelet sub band entropy based feature extraction method for BCI[J]. Procedia Computer Science, 2015,46:1476-1482.
[18] 郭辉, 杨可明, 张文文 , 等. 小波包信息熵特征矢量光谱角高光谱影像分类[J]. 中国图象图形学报, 2017,22(2):205-211.
[18] Guo H, Yang K M, Zhang W W , et al. Classification of a hyperspectral image based on wavelet packet entropy feature vector angle[J]. Journal of Image and Graphics, 2017,22(2):205-211.
[19] 张川, 叶发旺, 徐清俊 , 等. 钻孔岩心高光谱技术系统及其在矿产勘查中的应用[J]. 地质科技情报, 2016,35(6):177-183.
[19] Zhang C, Ye F W, Xu Q J , et al. Drill core hyperspectral technology system and its application in mineral prospecting[J]. Geological Science and Technology Information, 2016,35(6):177-183.
[20] 张川, 叶发旺, 姚佳蕾 , 等. 成像光谱钻孔岩芯编录的实现方法[J]. 遥感信息, 2017,32(5):69-74.
[20] Zhang C, Ye F W, Yao J L , et al. Implementation method of drill core logging based on imaging spectrometer[J]. Remote Sensing Information, 2017,32(5):69-74.
[1] Chenchao XIAO, Xiaojuan WU, Daming WANG, Yongbin CHU. Oil-gas information extraction and prospective area prediction based on hydrocarbon microseepage theory: A case study of Salamat Basin in Central Africa[J]. Remote Sensing for Land & Resources, 2019, 31(4): 120-127.
[2] Zhan YIN, Lijun ZHANG, Jianliang DUAN, Pei ZHANG. Improvement and application of forced invariance vegetation suppression in southern vegetation area[J]. Remote Sensing for Land & Resources, 2019, 31(2): 82-88.
[3] KUAI Kaifu, XU Wenbin, HUANG Zhicai, LI Su. Remote sensing geological characteristics and prospecting of the BIF-type iron deposits in Pilbara Craton of Western Australia[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(4): 93-101.
[4] ZHANG Yuan, ZHANG Jielin, ZHAO Xuesheng, YUAN Bo. Extraction of mineral alteration information from core hyperspectral images based on weight of absorption peak[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(2): 154-159.
[5] KUANG Zhong, HUANG Xinxin, KUANG Shunda, LU Zhengyan, LONG Shengqing. Distribution characteristics of remote sensing information on weak mineralization and alteration in Guizhou[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(2): 140-147.
[6] XIA Qing, YANG Wunian, ZHAO Ni. Extraction of remote sensing alteration information of Kosrap area in northern basin-mountain coupling zone of Tibetan Plateau[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(1): 127-131.
[7] QIAN Jianping, ZHANG Yuan, ZHAO Xiaoxing, ZHAO Shaojie, LI Chengli. Extraction of linear structure and alteration information based on remote sensing image and ore-prospecting prognosis for Dongwu Banner, Inner Mongolia[J]. REMOTE SENSING FOR LAND & RESOURCES, 2013, 25(3): 109-117.
[8] ZHANG Yuanfei, YUAN Jiming, YANG Zian, LYU Weiyan, ZHANG Siying. Type classification of 2D scatter plot of remote sensing image based on the physical meaning and extraction of remote sensing alteration information[J]. REMOTE SENSING FOR LAND & RESOURCES, 2013, 25(2): 57-62.
[9] WANG Dong-yin, ZHU Gu-chang, ZHANG Yuan-fei. Spatial Structure Features and Basic Statistic Parameters of Typical Ground Object Spectral Data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2012, 24(4): 138-145.
[10] ZHENG Gui-xiang, CHI Tian-he, LIN Qi-zhong. Fractal Application in Lithological Classification and Alteration Extraction[J]. REMOTE SENSING FOR LAND & RESOURCES, 2012, 24(2): 110-115.
[11] ZHANG Yong-ting, ZHANG Xiao-dong, LIU Zi-zeng, ZHANG Yong-jie, ZHANG Hui-juan. The Extraction of Fault Structure and Wall Rock Alteration Remote Sensing Information in Ningxia[J]. REMOTE SENSING FOR LAND & RESOURCES, 2012, 24(1): 132-136.
[12] WANG Wei, ZHANG Shi-tao, YIN Guang-hou, XU Dong. The Application of ASTER Data to Extracting Alteration Anomaly Information in Skarn Sn Deposits: A Case Study of the Maguan-Dulong Sn Deposit in Southeast Yunnan[J]. REMOTE SENSING FOR LAND & RESOURCES, 2012, 24(1): 155-159.
[13] ZHANG Yuan-fei, WU De-wen, YUAN Ji-ming, ZHU Gu-chang, YANG Zi-an, HU Bo. The Model and Application of Multi-level Detaching Technique of Remote Sensing Alteration Information[J]. REMOTE SENSING FOR LAND & RESOURCES, 2011, 23(4): 6-13.
[14] HU Bo, ZHU Gu-chang, ZHANG Yuan-fei, XIAO Ran. The Application of Spatial U-static Method to the Extraction of Alteration Anomalies[J]. REMOTE SENSING FOR LAND & RESOURCES, 2011, 23(3): 71-76.
[15] CHENG Zhi-Yan, ZHAO Pei-Song. The Remote Sensing Alteration Information Extraction and Metallogenic Prognosis of the Boka Gold Deposit in Yunnan Province[J]. REMOTE SENSING FOR LAND & RESOURCES, 2011, 23(2): 135-140.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech