Please wait a minute...
 
Remote Sensing for Natural Resources    2022, Vol. 34 Issue (1) : 277-285     DOI: 10.6046/zrzyyg.2021036
|
Application of hyperspectral remote sensing data-based anomaly extraction in copper-gold prospecting in the Solake area in the Altyn metallogenic belt, Xinjiang
WANG Qian1(), REN Guangli2()
1. China Railway Cadre Management Training Academy, Xianyang 712000, China
2. Xi’an Center of Geological Survey, China Geological Survey, Xi’an, 710054, China
Download: PDF(6712 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

This study extracted and analyzed the altered mineral anomalies in the Suolake area in the Altyn metallogenic belt, Xinjiang using the airborne hyperspectral remote sensing data (CASI/SASI). Based on this, the distribution pattern and genesis of the altered mineral anomalies in the area were summarized. Then, the spectral curve characteristics of altered minerals from different geologic bodies were analyzed and summarized according to the ground spectrum measurement of typical rocks and minerals. Meanwhile, the spectral measurement and analysis of the geologic profiles of altered minerals in the Suolake copper-gold deposit were conducted. Then, representative altered mineral assemblages were determined, and the hyperspectral remote sensing prospecting model based on gold deposits in this area was established. Base on metallogenic geological setting and geochemical anomaly characteristics, this study explored the application of hyperspectral remote sensing data-based anomaly extraction in metallogenic prediction. The results verified that the anomaly areas delineated using hyperspectral remote sensing data have favorable gold mineralization, suggesting that hyperspectral remote sensing can provide accurate and reliable information for ore prospecting.

Keywords hyperspectral remote sensing      altered minerals      prospecting model      gold deposits      Altyn     
ZTFLH:  TP79  
Corresponding Authors: REN Guangli     E-mail: 798345809@qq.com;renguangli9977@163.com
Issue Date: 14 March 2022
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Qian WANG
Guangli REN
Cite this article:   
Qian WANG,Guangli REN. Application of hyperspectral remote sensing data-based anomaly extraction in copper-gold prospecting in the Solake area in the Altyn metallogenic belt, Xinjiang[J]. Remote Sensing for Natural Resources, 2022, 34(1): 277-285.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2021036     OR     https://www.gtzyyg.com/EN/Y2022/V34/I1/277
Fig.1  Geological map of Solak copper-gold deposit (modified by reference [11])
Fig.2  Distribution of the hyperspectral altered mineral in Solak copper-gold deposit area
Fig.3  Alteration characteristics of Solak gold-copper mineralization
Fig.4  Spectra of typical rocks and broken alteration zone in the Solak copper-gold deposit area
样号 岩性 光谱特征峰 解算结果/% 矿物组成(X射线衍射分析)/% Au品位/
(g·t-1)
HL-016 绿泥石化玄武岩 Fe-OH(2 250 nm),Mg-OH
(2 345 nm),Fe3+,Fe2+
方解石34.42、绿泥石65.58 石英7.8、斜长石39.4、方解石5.4、角闪石1.4、伊利石2.5、绿泥石43.5
HL-017 蚀变破碎带 -OH(2 250 nm), Al-OH
(2 210 nm),Fe3+
石膏20.07、黄钾铁矾79.93 石英56.8、斜长石5.4、钠铁矾18、石膏11.8、伊利石8 0.39
HL-018 孔雀石化石英闪长岩 -OH(2 250 nm),Al-OH
(2 210 nm),Cu2+
伊利石50.21、绿泥石18.68、硅孔雀石31.12 石英53.7、斜长石33.1、方解石1、石膏2.2、伊利石5、绿泥石5 <0.05
HL-019 褐铁矿化石英闪长岩 -OH(2 352 nm),Al-OH
(2 201 nm),Fe-OH(2 257 nm),Fe3+
褐铁矿59.35、蒙脱石27.82、伊利石8.21、绿泥石9.62 石英49.2、斜长石30.7、黄铁矿2.7、石膏4.4、蒙脱石2、伊利石5、绿泥石6 0.34
HL-020 花岗岩脉 -OH(2 352 nm),Al-OH(2 204 nm),Fe-OH(2 248 nm),Fe3+ 褐铁矿49.92、绢云母50.08 石英48.5、斜长石46.1、白云石0.7、石膏3.7、绿泥石1 <0.05
HL-021 安山岩 Fe-OH(2 253 nm),Mg-OH
(2 342 nm),Fe3+,Fe2+
绿泥石89.26、绢云母10.74
HL-022 红褐色蚀变带 Al-OH(2 207 nm),Fe3+ 褐铁矿46.93、蒙脱石53.07 石英10.9、斜长石37、黄钾铁矾8、纤铁矾10、石膏19.1、伊利石9.5、绿泥石5.5 <0.05
HL-023 英安质凝灰岩 Fe-OH(2 254 nm),Mg-OH
(2 344 nm),Fe3+,Fe2+
方解石5.67、绿泥石47.45、伊利石46.87 石英7.8、斜长石38.7、方解石2.5、伊利石2、绿泥石49
HL-024 孔雀石化石英闪长岩 Cu2+(520 nm),C O 3 2 -(2 342 nm) 蓝铜矿46.55、孔雀石31.09、方解石22.36 石英15.9、斜长石31.2、方解石0.7、石膏0.2、伊利石2、绿泥石50 <0.05
Tab.1  Mineral composition characteristics of different geological bodies in the Solak copper-gold deposit area
标志类型 具体描述
矿床特征 成矿类型 热液蚀变型金 (铜 )矿
赋矿岩石 南华系索拉克组
矿化蚀变 褐铁矿化、黄铁矿化、硅化、孔雀石化
围岩蚀变 绿泥石化、硅化、绢云母化、碳酸盐化、绿帘石化,石膏化
矿体形态 脉状、透镜状
控矿构造 控矿构造 压性或压扭性逆断层形成的碎裂岩带,影像上线性构造交错发育
成矿部位 破碎蚀变带,影像上呈线性负地形
岩浆岩 次火山岩,斜长花岗岩,闪长岩,石英闪长 (玢)岩
化探异常 元素组合以Au,As,Mo,Cu及Au,As,Zn,Ag元素较明显
标志性蚀变矿物组合 高铝绢云母化、褐铁矿化、伊利石化
蚀变组合 绿泥石、绿帘石、方解石
典型矿床 索拉克金铜矿
Tab.2  Prospecting marks of hyperspectral remote sensing for the copper-gold deposit in study area
Fig.5  Anomalous distribution of hyperspectral altered minerals in western of Matekesayigou verify area
Fig.6  Anomalous distribution of hyperspectral altered minerals in Matekesayigou verify area
Fig.7  Field profile of broken alteration zone
Fig.8  Photos of broken alteration zone and copper mineralization in verify point of DBK-044
样号 石英 斜长石 钾长石 方解石 铁白云石 黄钾铁矾 针铁矿 赤铁矿 石膏 伊利石 高岭石
BK-30 36.6 0.8 32.3 14.4 6.4 4.0 5.5
BK-34 64.8 4.5 7.2 1.4 2.1 8.5 11.5
BK-37 74.3 1.1 3.7 2.4 8.5 10.0
BK-38 46.6 12.0 0.8 18.1 9.0 13.5
Tab.3  Analysis of mineral components by X-diffraction of samples in the verified area(%)
Fig.9  Characteristics of spectral curve for broken alteration zone and mylonitic tuff
[1] 周可法, 孙莉, 张楠楠. 中亚地区高光谱遥感地物蚀变信息识别与提取[M]. 北京: 地质出版社, 2008:1-16.
[1] Zhou K F, Sun L, Zhang N N. Identification and extraction of ground object alteration information by hyperspectral remote sensing in Central Asia area[M]. Beijing: Geological Publishing House, 2008:1-16.
[2] 张宗贵, 王润生. 基于谱学的成像光谱遥感技术发展与应用[J]. 自然资源遥感, 2000, 12(3):16-37.doi: 10.6046/gtzyyg.2000.03.03.
doi: 10.6046/gtzyyg.2000.03.03
[2] Zhang Z G, Wang R S. Imaging spectrometer remote sensing methodological technology and it’s application based on spectroscopy[J]. Remote Sensing for Land and Resources, 2000, 12(3):16-37.doi: 10.6046/gtzyyg.2000.03.03.
doi: 10.6046/gtzyyg.2000.03.03
[3] 李志忠, 杨日红, 党福星, 等. 高光谱遥感卫星技术及其地质应用[J]. 地质通报, 2009, 28(2-3):270-277.
[3] Li Z Z, Yang R H, Dang F X, et al. The hyperspectral remote sensing technology and its application[J]. Geological Bulletin of China, 2009, 28(2-3):270-277.
[4] 王润生, 甘甫平, 闫柏琨, 等. 光谱矿物填图技术与应用研究[J]. 自然资源遥感, 2010, 22(1):1-13.doi: 10.6046/gtzyyg.2010.01.01.
doi: 10.6046/gtzyyg.2010.01.01
[4] Wang R S, Gan P P, Yan B K, et al. hyperspectral mineral mapping and its application[J]. Remote Sensing for Land and Resources, 2010, 22(1):1-13.doi: 10.6046/gtzyyg.2010.01.01.
doi: 10.6046/gtzyyg.2010.01.01
[5] 辜平阳, 陈瑞明, 查显峰, 等. 高山峡谷区1:50 000地质填图技术方法探索与实践——以新疆乌什北山为例[J]. 地质力学学报, 2016, 22(4):837-855.
[5] Gu P Y, Chen R M, Cha X F, et al. Exploration and practice of 1:50 000 geological mapping techniques for alpine-gorge area:A case study in Beishan area of Wushi,Xinjiang[J]. Journal of Geomechanics, 2016, 22(4):837-855.
[6] 任广利, 杨军录, 杨敏, 等. 高光谱遥感异常提取在甘肃北山金滩子—明金沟地区成矿预测中的应用[J]. 大地构造与成矿学, 2013, 37(4):765-776.
[6] Ren G L, Yang J L, Yang M, et al. Application of hyperspectral remote sensing anomaly information on metallogenic prediction in the Jintanzi-Mingjingou area of Beishan,Gansu[J]. Geotectonica et Metallogenia, 2013, 37(4):765-776.
[7] 任广利, 杨敏, 李健强, 等. 高光谱蚀变信息在金矿找矿预测中的应用研究——以北山方山口金矿线索为例[J]. 自然资源遥感, 2017, 29(3):182-190.doi: 10.6046/gtzyyg.2017.03.27.
doi: 10.6046/gtzyyg.2017.03.27
[7] Ren G L, Yang M, Li J Q, et al. Application of hyperspecntral alteration information to gold prospecting:A case study of Fangshankou area,Beishan[J]. Remote Sensing for Land and Resources, 2017, 29(3):182-190.doi: 10.6046/gtzyyg.2017.03.27.
doi: 10.6046/gtzyyg.2017.03.27
[8] 刘德长, 闫柏琨, 邱骏挺. 航空高光谱遥感固体矿产预测方法与示范应用[J]. 地球学报, 2016, 37(3):349-358.
[8] Liu D C, Yan B K, Qiu J T, et al. The application of airborne hyper-spectral remote sensing technology to mineral resources exploration[J]. Acta Geoscientica Sinica, 2016, 37(3):349-358.
[9] 孙雨, 赵英俊, 秦凯, 等. 基于航空成像高光谱数据的玉石矿找矿要素识别和找矿预测——以青海省纳赤台地区为例[J]. 地质论评, 2017, 63(s1):203-204.
[9] Sun Y, Zhao Y J, Qin K, et al. Ore-forming factors and prospecting of jade ore using airborne hyperspectral data:Taken the Nachitai area in Qinghai Province as an example[J]. Geological Review, 2017, 63(s1):203-204.
[10] 易欢, 李健强, 韩海辉, 等. 遥感技术在阿尔金贝壳滩地区矿产资源综合调查中的应用[J]. 中国地质调查, 2016, 3(4):1-5.
[10] Yi H, Li J Q, Han H H, et al. Application of remote sensing in integrated survey on mineral exploration in Beketan,Altyn[J]. Geological Survey of China, 2016, 3(4):1-5.
[11] 王瑞军, 董双发, 孙永彬, 等. 新疆索拉克地区成矿信息要素遥感解译研究及应用[J]. 矿产与地质, 2016, 30(6):972-979.
[11] Wang R J, Dong S F, Sun Y B, et al. A study on remote sensing interpretation of metallogenic information elements and its application in Suolake area of Xinjiang[J]. Mineral Resources and Geology, 2016, 30(6):972-979.
[12] 王瑞军, 孙永彬, 李名松, 等. 新疆阿尔金盘龙沟金矿高光谱蚀变矿物找矿标志研究[J]. 地质找矿论丛, 2017, 32(2):300-311.
[12] Wang R J, Sun Y B, Li M S, et al. Hyperspectral alteration mineral prospecting marks of Panlonggou gold deposit,Aerjin,Xinjian[J]. Contribtions to Geology and Mineral Resources Research, 2017, 32(2):300-311.
[13] 闫柏琨, 董新丰, 王喆, 等. 航空高光谱遥感矿物信息提取技术及其应用进展——以中国西部成矿带调查为例[J]. 中国地质调查, 2016, 3(4):55-62.
[13] Yan B K, Dong X F, Wang Z, et al. Mineral information extraction technology by airborne hyperspectral remote sensing and its application progress:An example of mineralization belts of western China[J]. Geological Survey of China, 2016, 3(4):55-62.
[14] Zhang J X, Zhang Z M, Xu Z Q, et al. Petrology and geochronology of eclogite from the western segment of the Altyn Tagh,northwern China[J]. Lithos, 2001, 56:187-206.
doi: 10.1016/S0024-4937(00)00052-9 url: https://linkinghub.elsevier.com/retrieve/pii/S0024493700000529
[15] 许志琴, 杨经绥, 张建新, 等. 阿尔金断裂两侧构造单元的对比及岩石圈剪机制[J]. 地质学报, 1999(3):193-205.
[15] Xu Z Q, Yang J S, Zhang J X, et al. A comparison between the tectonic units on the two sides of the Altyn sinistral strike-slip fault and the mechanism of lithospheric shearing[J]. Acta Geological Sinica, 1999(3):193-205.
[16] Gao X F, Xiao P X, Guo L, et al. Opening of an early Paleozoic limited oceanic basin in the northern Altyn area:Constraints from plagiogranites in the Hongliugou-Lapeiquan ophiolitic mélange[J]. Science China Earth Sciences, 2011, 54:1871-1879.
doi: 10.1007/s11430-011-4332-9 url: http://link.springer.com/10.1007/s11430-011-4332-9
[17] Gao X F, Xiao P X, Kang L, et al. Late Ordovician back-arc extension in the southeastern margin of the Tarim Craton,NW China:Elemental and Sr-Nd isotopic constraints from the Hongliugou basalts[J]. Geochemical Journal, 2019, 53:359-378.
doi: 10.2343/geochemj.2.0573 url: https://www.jstage.jst.go.jp/article/geochemj/53/6/53_2.0573/_article
[18] 车自成, 刘良, 罗金海. 中国及其邻区区域大地构造学[M]. 北京: 科学出版社, 2002:207-369.
[18] Che Z C, Liu L, Luo J H . Tectonics of China and adjacent region[M]. Beijing: Science Press, 2002:207-369.
[19] 孙勇, 刘池阳, 车自成. 阿尔金拉配泉地区元古界裂谷火山岩系及其构造意义[J]. 地质论评, 1997, 43(1):17-24.
[19] Sun Y, Liu C Y, Che Z C. The Proterozoic rift volcanic series in the Lapeiquan area,the Altun mountains and its tectonic significance[J]. Geological Review, 1997, 43(1):17-24.
[20] 胡云绪, 校培喜, 高晓峰, 等. 东昆仑西段-阿尔金地区区域地层划分及地层时空格架建立[J]. 西北地质, 2010, 43(4):152-158.
[20] Hu Y X, Xiao P X, Gao X F, et al. Division and space-time frame foundation of regional stratum in the western sector of east Kunlun and the Altun region[J]. Northwestern Geology, 2010, 43(4):152-158.
[21] Lu S N, Li H K, Zhang C L, et al. Geological and geochronological evidence for the Precambrian evolution of the Tarim Craton and surrounding continental fragments[J]. Precambrian Reseach, 2008, 160:94-107.
[22] 邓书斌. ENVI遥感图像处理方法[M]. 北京: 科学出版社, 2010:361-373.
[22] Deng S B. The method of ENVI remote sensing image processing[M]. Beijing: Science Press, 2010:361-373.
[23] 新疆维吾尔自治区地质矿产局. 新疆维吾尔自治区区域地质志[M]. 北京: 地质出版社, 1993.
[23] Bureau of Geology and Mineral Resources of Xinjiang Uygur Autonomous Region. Regional geology of Xinjiang Uygur Autonomous Region[M]. Beijing: Geological Publishing House, 1993.
[24] Bierwirth P, Huston D, Blewett R. Hyperspectral mapping of mineral assemblages associated with gold mineralization in the central Pilbara,Western Australia[J]. Economic Geology, 2002, 97:819-826.
doi: 10.2113/gsecongeo.97.4.819 url: https://pubs.geoscienceworld.org/economicgeology/article/97/4/819-826/22214
[25] van Ruitenbeek F J A, Debba P, van der Meer F D, et al. Mapping white micas and their absorption wavelengths using hyperspectral band ratios[J]. Remote Sensing of Environment, 2006, 102:211-222.
doi: 10.1016/j.rse.2006.02.012 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425706000769
[1] KONG Zhuo, YANG Haitao, ZHENG Fengjie, LI Yang, QI Ji, ZHU Qinyu, YANG Zhonglin. Research advances in atmospheric correction of hyperspectral remote sensing images[J]. Remote Sensing for Natural Resources, 2022, 34(4): 1-10.
[2] GAO Wenlong, ZHANG Shengwei, LIN Xi, LUO Meng, REN Zhaoyi. The remote sensing-based estimation and spatial-temporal dynamic analysis of SOM in coal mining[J]. Remote Sensing for Natural Resources, 2021, 33(4): 235-242.
[3] JIANG Yanan, ZHANG Xin, ZHANG Chunlei, ZHONG Chengcheng, ZHAO Junfang. Classification of remote sensing images based on multi-scale feature fusion using local binary patterns[J]. Remote Sensing for Natural Resources, 2021, 33(3): 36-44.
[4] ZANG Chuankai, SHEN Fang, YANG Zhengdong. Aquatic environmental monitoring of inland waters based on UAV hyperspectral remote sensing[J]. Remote Sensing for Natural Resources, 2021, 33(3): 45-53.
[5] HU Xinyu, XU Zhanghua, CHEN Wenhui, CHEN Qiuxia, WANG Lin, LIU Hui, LIU Zhicai. Construction and application effect of normalized shadow vegetation index NSVI based on PROBA/CHRIS image[J]. Remote Sensing for Land & Resources, 2021, 33(2): 55-65.
[6] WANG Ruijun, ZHANG Chunlei, SUN Yongbin, WANG Shen, DONG Shuangfa, WANG Yongjun, YAN Bokun. Application of hyperspectral spectroscopy to constructing polymetallic prospecting model in Hongshan, Gansu Province[J]. Remote Sensing for Land & Resources, 2020, 32(3): 222-231.
[7] Ce ZHANG, Lihong PENG, En ZHANG, Lihua FU, Bing WANG. A study of metallogenic prognosis of the Dimunalike iron ore belt based on remote sensing and aeromagnetic data[J]. Remote Sensing for Land & Resources, 2019, 31(3): 216-224.
[8] Donghui ZHANG, Yingjun ZHAO, Kai QIN. Design and construction of the typical ground target spectral information system[J]. Remote Sensing for Land & Resources, 2018, 30(4): 206-211.
[9] Jing CUI, Xinfeng DONG, Rui DING, Shimin ZHANG, Conghe WANG, Hengxin LU, Yanyun SUN. Stratigraphic division of loess along loess profile based on hyperspectral remote sensing[J]. Remote Sensing for Land & Resources, 2018, 30(2): 202-207.
[10] REN Guangli, YANG Min, LI Jianqiang, GAO Ting, LIANG Nan, YI Huan, YANG Junlu. Application of hyperspectral alteration information to gold prospecting: A case study of Fangshankou area,Beishan[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(3): 182-190.
[11] SU Hongjun, LIU Hao. A novel dynamic classifier selection algorithm using spatial-spectral information for hyperspectral classification[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(2): 15-21.
[12] LIN Na, YANG Wunian, WANG Bin. Pixel un-mixing for hyperspectral remote sensing image based on kernel method[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(1): 14-20.
[13] CHAI Ying, RUAN Renzong, CHAI Guowu, FU Qiaoni. Species identification of wetland vegetation based on spectral characteristics[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(3): 86-90.
[14] DAI Xiaoai, JIA Hujun, ZHANG Xiaoxue, WU Fenfang, GUO Shouheng, YANG Wunian, YANG Ye. Identification of hyperspectral features for subalpine typical vegetation in the upper reaches of the Minjiang River[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(3): 174-180.
[15] HE Hao, SHEN Yonglin, LIU Xiuguo, MA Li. Spatial-spectral constrained graph-based semi-supervised classification for hyperspectral image[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(3): 31-36.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech