Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2012, Vol. 24 Issue (4) : 117-123     DOI: 10.6046/gtzyyg.2012.04.20
Technology Application |
Application of High Resolution Satellite Remote Sensing Technology in Identification and Analysis of the Uranium Mineralization Bleached Alteration
YE Fa-wang, LIU De-chang
National Key Lab.of Remote Sensing Information and Image Analysis Technology, Beijing Research Institute of Uranium Geology, Beijing 100029, China
Download: PDF(6896 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  High resolution satellite remote sensing technology is an important new technology and method in the field of geological exploration,with which many application results have been made. However, the typical applications to identifying and analyzing the mineralization alteration information are very insufficient. In this paper,the typical application of high resolution satellite remote sensing technology in identification and analysis of the uranium mineralization bleached alteration was illustrated from the angle of uranium exploration,including the identification of bleached alteration information and the analysis of its spatial distribution in the Bashibulake uranium ore district on the northern margin of Tarim Basin in Xinjiang,the discovery of grayish white bleached alteration and the analysis of its spatial distribution in the eastern part of Keping up-lift on the northern margin of Tarim Basin in Xinjiang. These two typical applications show that high resolution satellite remote sensing technology can achieve good application effects in identifying mineralization alteration information,and the further excavation of its application potential is very valuable in the future.
Keywords impervious surface      remote sensing      data fusion      urbanization     
: 

TP 79

 
Issue Date: 13 November 2012
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
REN Jin-hua
WU Shao-hua
ZHOU Sheng-lu
LIN Chen
Cite this article:   
REN Jin-hua,WU Shao-hua,ZHOU Sheng-lu, et al. Application of High Resolution Satellite Remote Sensing Technology in Identification and Analysis of the Uranium Mineralization Bleached Alteration[J]. REMOTE SENSING FOR LAND & RESOURCES, 2012, 24(4): 117-123.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2012.04.20     OR     https://www.gtzyyg.com/EN/Y2012/V24/I4/117
[1] 王瑞雪,史茂,高建国,等.高分辨率遥感影像在云南澜沧老厂矿床地质研究中的应用[J].国土资源遥感,2009(3):65-69.

Wang R X,Shi M,Gao J G,et al.The Application of High Resolution Image to the Geological Study of the Laochang Deposit in Lancang,Yunnan Province[J].Remote Sensing for Land and Resources,2009(3):65-69(in Chinese with English Abstract).

[2] 余勇,钱建平,袁爱平.高龙金矿区高分辨率遥感线性构造分形特征及综合成矿预测[J].矿产与地质,2005,19(2):208-212.

Yu Y,Qian J P,Yuan A P.Fractal Characteristics of High Resolution Remote Sensing Lineations in Gaolong Gold Deposit and Integrated Ore Deposit Prediction[J].Mineral Resources and Geology,2005,19(2):208-212(in Chinese with English Abstract).

[3] 张自力,秦其明,曹宝,等.高分辨率遥感影像在岩墙地质体信息提取中的应用[J].地理与地理信息科学,2007,23(3):15-18.

Zhang Z L,Qing Q M,Cao B,et al.Application of High-resolution Satellite Images to Extraction of Dyke Attributes[J].Geography and Geo-information Science,2007,23(3):15-18(in Chinese with English Abstract) .

[4] 何凯涛,甘甫平,王永江.高空间分辨率卫星遥感地质微构造及蚀变信息识别[J].国土资源遥感,2009(1):97-99.

He K T,Gan F P,Wang Y J.The Extraction of Geological Micro-structure and Altered Rock Information with High Resolution Satellite Images in a Small Range[J].Remote Sensing for Land and Resources,2009(1):97-99(in Chinese with English Abstract).

[5] 丁万烈,申科峰.水成铀矿沉积岩的后生蚀变[J].铀矿地质,2001,17(2):598-614.

Ding W L,Shen K F.Epigenetic Alteration of Sedimentary Rock at Hydro-genic Uranium Deposits[J].Uranium Geology,2001,17(2):598-614(in Chinese with English Abstract).

[6] 秦明宽,赵瑞全.对塔里木盆地巴什布拉克铀矿床成因的新认识[J].铀矿地质,2000,16(1):26-30.

Qin M K,Zhao R Q.New Understanding in Genesis of Uranium Deposit Bashblak in Tarim Basin[J].Uranium Geology,2000,16(1):26-30(in Chinese with English Abstract).

[7] 黄以.塔里木盆地中新生代红层的次生还原作用与铀矿化[J].新疆地质,1997,15(1):84-89.

Huang Y.Secondary Reduction and Uranium Mineralization of Meso-cenozoic Red Beds in Tarim Basin[J].Xingjiang Geology,1997,15(1):84-89(in Chinese with English Abstract).

[8] 王驹,杜乐天.论铀成矿过程中的气还原作用[J].铀矿地质,1995,11(1):19-24.

Wang J,Du L T.Gas Reduction:An Important Factor in the Formation of Uranium Deposits[J].Uranium Geology,1995,11(1):19-24(in Chinese with English Abstract).

[9] 张玉君,杨建民,陈薇.ETM+(TM)蚀变遥感异常提取方法研究与应用——地质依据和波谱前提[J].国土资源遥感,2002(4):30-36.

Zhang Y J,Yang J M,Chen W.A Study of the Method for Extraction of Alteration Anomalies from the ETM+(TM)Data and Its Application:Geological Basis and Spectral Precondition[J].Remote Sensing for Land and Resources,2002(4):30-36(in Chinese with English Abstract).

[10] 叶发旺,刘德长.巴什布拉克铀矿区遥感油气还原蚀变信息提取[J].国土资源遥感,2008(4):39-42.

Ye F W,Liu D C.The Application of Remote Sensing Data to the Extraction of Reducing Alteration Information of Gas and Oil in the Bashibulake Uranium Ore District[J].Remote Sensing for Land and Resources,2008(4):39-42(in Chinese with English Abstract).

[11] 张玉君,曾朝铭,陈薇.ETM+(TM)蚀变遥感异常提取方法研究与应用——方法选择与技术流程[J].国土资源遥感,2003(2):44-49.

Zhang Y J,Zeng Z M,Chen W.The Methods for Extraction of Alteration Anomalies from the ETM+(TM)Data and Their Application:Method Selection and Technological Flow Chart[J].Remote Sensing for Land and Resources,2003(2):45-49(in Chinese with English Abstract).

[12] 耿新霞,杨建民,张玉君,等.ASTER数据在浅覆盖区蚀变遥感异常信息提取中的应用——以新疆西准噶尔包古图斑岩铜矿岩体为例[J].地质论评,2008,54(2):184-190.

Geng X X,Yang J M,Zhang Y J,et al.The Application of ASTER Remote Sensing Data for Extraction of Alteration Anomalies Information in Shallow Overburden Area:A Case Study of the Baoguto Porohyry Copper Deposit Intrusion in Western Junggar,Xinjiang[J].Geological Review,2008,54(2):184-190(in Chinese with English Abstract).

[13] 刘德长,叶发旺,张静波.东胜铀成矿区断隆成矿观点的提出及其地质意义[J].铀矿地质,2006,23(1):38-42.

Liu D C,Ye F W, Zhang J B.Proposing Metallogenic Viewpoint of Fault-uplift and Its Geological Significance[J].Uranium Geology,2006,23(1):38-42(in Chinese with English Abstract).

[14] 刘德长,崔焕敏,叶发旺,等.中国克拉通盆地断隆成矿后遥感研究新证[M] //李子颖.核地质科技论文集.北京:地质出版社,2009:181-191.

Liu D C,Cui H M,Ye F W,et al.New Evidences for Up-lift Metallogenesis in Chinese Craton Basin Using Post-remote Sensing Application Technology[M] //Li Z Y.Process of Scientific Technology for Nuclear Geology.Beijing:Geological Publishing House,2009:181-191(in Chinese).
[1] LIU Wen, WANG Meng, SONG Ban, YU Tianbin, HUANG Xichao, JIANG Yu, SUN Yujiang. Surveys and chain structure study of potential hazards of ice avalanches based on optical remote sensing technology: A case study of southeast Tibet[J]. Remote Sensing for Natural Resources, 2022, 34(1): 265-276.
[2] WANG Qian, REN Guangli. Application of hyperspectral remote sensing data-based anomaly extraction in copper-gold prospecting in the Solake area in the Altyn metallogenic belt, Xinjiang[J]. Remote Sensing for Natural Resources, 2022, 34(1): 277-285.
[3] LYU Pin, XIONG Liyuan, XU Zhengqiang, ZHOU Xuecheng. FME-based method for attribute consistency checking of vector data of mines obtained from remote sensing monitoring[J]. Remote Sensing for Natural Resources, 2022, 34(1): 293-298.
[4] ZHANG Daming, ZHANG Xueyong, LI Lu, LIU Huayong. Remote sensing image segmentation based on Parzen window density estimation of super-pixels[J]. Remote Sensing for Natural Resources, 2022, 34(1): 53-60.
[5] XUE Bai, WANG Yizhe, LIU Shuhan, YUE Mingyu, WANG Yiying, ZHAO Shihu. Change detection of high-resolution remote sensing images based on Siamese network[J]. Remote Sensing for Natural Resources, 2022, 34(1): 61-66.
[6] SONG Renbo, ZHU Yuxin, GUO Renjie, ZHAO Pengfei, ZHAO Kexin, ZHU Jie, CHEN Ying. A method for 3D modeling of urban buildings based on multi-source data integration[J]. Remote Sensing for Natural Resources, 2022, 34(1): 93-105.
[7] LI Weiguang, HOU Meiting. A review of reconstruction methods for remote-sensing-based time series data of vegetation and some examples[J]. Remote Sensing for Natural Resources, 2022, 34(1): 1-9.
[8] DING Bo, LI Wei, HU Ke. Inversion of total suspended matter concentration in Maowei Sea and its estuary, Southwest China using contemporaneous optical data and GF SAR data[J]. Remote Sensing for Natural Resources, 2022, 34(1): 10-17.
[9] GAO Qi, WANG Yuzhen, FENG Chunhui, MA Ziqiang, LIU Weiyang, PENG Jie, JI Yanzhen. Remote sensing inversion of desert soil moisture based on improved spectral indices[J]. Remote Sensing for Natural Resources, 2022, 34(1): 142-150.
[10] ZHANG Qinrui, ZHAO Liangjun, LIN Guojun, WAN Honglin. Ecological environment assessment of three-river confluence in Yibin City using improved remote sensing ecological index[J]. Remote Sensing for Natural Resources, 2022, 34(1): 230-237.
[11] HE Peng, TONG Liqiang, GUO Zhaocheng, TU Jienan, WANG Genhou. A study on hidden risks of glacial lake outburst floods based on relief amplitude: A case study of eastern Shishapangma[J]. Remote Sensing for Natural Resources, 2022, 34(1): 257-264.
[12] YU Xinli, SONG Yan, YANG Miao, HUANG Lei, ZHANG Yanjie. Multi-model and multi-scale scene recognition of shipbuilding enterprises based on convolutional neural network with spatial constraints[J]. Remote Sensing for Natural Resources, 2021, 33(4): 72-81.
[13] LI Yikun, YANG Yang, YANG Shuwen, WANG Zihao. A change vector analysis in posterior probability space combined with fuzzy C-means clustering and a Bayesian network[J]. Remote Sensing for Natural Resources, 2021, 33(4): 82-88.
[14] AI Lu, SUN Shuyi, LI Shuguang, MA Hongzhang. Research progress on the cooperative inversion of soil moisture using optical and SAR remote sensing[J]. Remote Sensing for Natural Resources, 2021, 33(4): 10-18.
[15] LI Teya, SONG Yan, YU Xinli, ZHOU Yuanxiu. Monthly production estimation model for steel companies based on inversion of satellite thermal infrared temperature[J]. Remote Sensing for Natural Resources, 2021, 33(4): 121-129.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech