Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2013, Vol. 25 Issue (3) : 109-117     DOI: 10.6046/gtzyyg.2013.03.19
Technology Application |
Extraction of linear structure and alteration information based on remote sensing image and ore-prospecting prognosis for Dongwu Banner, Inner Mongolia
QIAN Jianping, ZHANG Yuan, ZHAO Xiaoxing, ZHAO Shaojie, LI Chengli
College of Earth Science, Guilin University of Technology, Guilin 541004, China
Download: PDF(7255 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Using ETM+ remote sensing data as the basic information sources,the authors carried out remote-sensing geological prospecting in Pb-Zn-Ag polymetallic ore zones of Dongwu Banner,Inner Mongolia. Remote sensing image was processed by geometric correction,atmospheric correction and the noise removal technology. Image filtering was conducted so as to enhance tectonic information and explain linear structure. The fractal dimension values were calculated by the method of fractal geometry and the box-counting dimension. As a result, the linear structures showed excellent statistical self-similarity and fractal characteristics in the study area. Principal component analysis and threshold segmentation were used to enhance the spectrum and space information and extract the iron-stained and hydroxy alteration information. Through comprehensively analyzing the linear structure,remote sensing alteration information,rock mass distribution characteristics,regional geochemical information and known deposits,seven metallogenic prospective areas at three levels were delineated.

Keywords regional evapotranspiration      RUE      DSSAT      remote sensing      biomass     
:  TP 79  
Issue Date: 03 July 2013
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
SU Tao
FENG Shaoyuan
XU Ying
Cite this article:   
SU Tao,FENG Shaoyuan,XU Ying. Extraction of linear structure and alteration information based on remote sensing image and ore-prospecting prognosis for Dongwu Banner, Inner Mongolia[J]. REMOTE SENSING FOR LAND & RESOURCES, 2013, 25(3): 109-117.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2013.03.19     OR     https://www.gtzyyg.com/EN/Y2013/V25/I3/109

[1] 况忠,龙胜清,曾禹人,等.黔西南地区遥感构造与金矿的关系及找矿预测[J].国土资源遥感,2012,24(1):160-165. Kuang Z,Long S Q,Zeng Y R,et al.The relationship between remote sensing structures and gold deposits and ore-prospecting prognosis in Southwest Guizhou[J].Remote Sensing for Land and Resources,2012,24(1):160-165.

[2] 赵少杰,钱建平,陈宏毅.遥感线性构造分形统计和蚀变信息提取在桂东地区金铅锌锡多金属成矿预测中的应用[J].大地构造与成矿学,2011,35(3):364-371. Zhao S J,Qian J P,Chen H Y.Application of fractal statistics of linear structure and alteration information extraction of remote sensing on the Au,Pb,Zn,Sn polymetallic minerogenetic prognosis in eastern Guangxi[J].Geotectonica et Metallogenia,2011,35(3):364-371.

[3] 余勇,钱建平,袁爱平.高龙金矿区高分辨率遥感线性构造分形特征及综合成矿预测[J].矿产与地质,2005,19(2):209-211. Yu Y,Qian J P,Yuan A P.Fractal characteristics of high resolution remote sensing lineations in Gaolong gold deposit and integrated ore deposit prediction[J].Mineral Resources and Geology,2005,19(2):209-211.

[4] Loughlin W P.Principal component analysis for alteration mapping[J].Photogrammetric Engineering and Remote Sensing,1991,57(9):163-1169.

[5] 郑桂香,池天河,蔺启忠.分形在岩性分类及蚀变信息提取中的应用[J].国土资源遥感,2012,24(2):110-115. Zheng G X,Chi T H,Lin Q Z.Fractal application in lithological classification and alteration extraction[J].Remote Sensing for Land and Resources,2012,24(2):110-115.

[6] Rajesh H M.Mapping proterozoic unconformity-related uranium deposits in the Rockhole area,northern Territory,Australia using Landsat ETM+[J].Ore Geology Reviews,2008,33(3/4):382-396.

[7] 邓吉秋,谢杨,张宝一,等.ETM+图像锰矿化蚀变信息提取与找矿预测[J].国土资源遥感,2011,23(1):102-105. Deng J Q,Xie Y,Zhang B Y,et al.The extraction of the manganese mineralization alteration information from the ETM+ image and ore prognosis[J].Remote Sensing for Land and Resources,2011,23(1):102-105.

[8] 刘文兰,张微.遥感构造蚀变异常信息提取及找矿预测——以老挝为例[J].国土资源遥感,2012,24(2):68-74. Liu W L,Zhang W.Remote sensing structural alteration information extraction and ore prognosis:A case study of Laos[J].Remote Sensing for Land and Resources,2012,24(2):68-74.

[9] 钱建平,伍贵华,陈宏毅.现代遥感技术在地质找矿中的应用[J].地质找矿论丛,2012,27(3):355-360. Qian J P,Wu G H,Chen H Y.The application of modern remote sensing technology to geology and ore exploration[J].Contributions to Geology and Mineral Resources Research,2012,27(3):335-360.

[10] 李继宏,张万昌.内蒙古东乌旗草原覆盖区遥感构造信息提取[J].地质找矿论丛,2005,20(2):137-141. Li J H,Zhang W C.Tectonic information extract in the Dong Ujimqin county grassland district of Inner Mongolia[J].Contributions to Geology and Mineral Resources Research,2005,20(2):137-141.

[11] 陈建平,胡明铭,李巨初.康滇地轴中南段区域构造格架的遥感地质统计分析[J].成都理工学院学报:自然科学版,1999,26(1):78-81. Chen J P,Hu M M,Li J C.Statistical analysis for regional structure by remote sensing geology in Kang-Dian Axis of the Earth[J].Journal of Chengdu University of Technology:Science and Technology Edition,1999,26(1):78-81.

[12] 朱晓华.中国主要地貌与地质灾害的空间分维及其关系研究[D].南京:南京师范大学,2002. Zhu X H.The study on the relationship between landform or geological hazard and spatial fractal dimension of China[D].Nanjing:Nanjing Normal University,2002.

[13] Hirata T.Fractal dimension of fault systems in Japan,Fractal structure in rock fracture geometry at various scales[J].Pure and Applied Geophysics,1989,131(12):157-170.

[14] 孔凡臣,丁国瑜.线性构造分维值的含义[J].地震,1991(5):33-37. Kong F C,Ding G Y.The implications of the fractal dimension values of lineaments[J].Earthquake,1991(5):33-37.

[15] 张玉君,杨建民,陈薇. ETM+(TM)蚀变遥感异常提取方法研究与应用——地质依据和波谱前提[J].国土资源遥感,2002,14(4):30-36. Zhang Y J,Yang J M,Chen W.A study of the method for extraction of alteration anomalies from the ETM+(TM)data and its application:Geologic basis and spectral precondition[J].Remote Sensing for Land and Resources,2002,14(4):30-36.

[1] LIU Wen, WANG Meng, SONG Ban, YU Tianbin, HUANG Xichao, JIANG Yu, SUN Yujiang. Surveys and chain structure study of potential hazards of ice avalanches based on optical remote sensing technology: A case study of southeast Tibet[J]. Remote Sensing for Natural Resources, 2022, 34(1): 265-276.
[2] WANG Qian, REN Guangli. Application of hyperspectral remote sensing data-based anomaly extraction in copper-gold prospecting in the Solake area in the Altyn metallogenic belt, Xinjiang[J]. Remote Sensing for Natural Resources, 2022, 34(1): 277-285.
[3] LYU Pin, XIONG Liyuan, XU Zhengqiang, ZHOU Xuecheng. FME-based method for attribute consistency checking of vector data of mines obtained from remote sensing monitoring[J]. Remote Sensing for Natural Resources, 2022, 34(1): 293-298.
[4] ZHANG Daming, ZHANG Xueyong, LI Lu, LIU Huayong. Remote sensing image segmentation based on Parzen window density estimation of super-pixels[J]. Remote Sensing for Natural Resources, 2022, 34(1): 53-60.
[5] XUE Bai, WANG Yizhe, LIU Shuhan, YUE Mingyu, WANG Yiying, ZHAO Shihu. Change detection of high-resolution remote sensing images based on Siamese network[J]. Remote Sensing for Natural Resources, 2022, 34(1): 61-66.
[6] SONG Renbo, ZHU Yuxin, GUO Renjie, ZHAO Pengfei, ZHAO Kexin, ZHU Jie, CHEN Ying. A method for 3D modeling of urban buildings based on multi-source data integration[J]. Remote Sensing for Natural Resources, 2022, 34(1): 93-105.
[7] LI Weiguang, HOU Meiting. A review of reconstruction methods for remote-sensing-based time series data of vegetation and some examples[J]. Remote Sensing for Natural Resources, 2022, 34(1): 1-9.
[8] DING Bo, LI Wei, HU Ke. Inversion of total suspended matter concentration in Maowei Sea and its estuary, Southwest China using contemporaneous optical data and GF SAR data[J]. Remote Sensing for Natural Resources, 2022, 34(1): 10-17.
[9] GAO Qi, WANG Yuzhen, FENG Chunhui, MA Ziqiang, LIU Weiyang, PENG Jie, JI Yanzhen. Remote sensing inversion of desert soil moisture based on improved spectral indices[J]. Remote Sensing for Natural Resources, 2022, 34(1): 142-150.
[10] ZHANG Qinrui, ZHAO Liangjun, LIN Guojun, WAN Honglin. Ecological environment assessment of three-river confluence in Yibin City using improved remote sensing ecological index[J]. Remote Sensing for Natural Resources, 2022, 34(1): 230-237.
[11] HE Peng, TONG Liqiang, GUO Zhaocheng, TU Jienan, WANG Genhou. A study on hidden risks of glacial lake outburst floods based on relief amplitude: A case study of eastern Shishapangma[J]. Remote Sensing for Natural Resources, 2022, 34(1): 257-264.
[12] AI Lu, SUN Shuyi, LI Shuguang, MA Hongzhang. Research progress on the cooperative inversion of soil moisture using optical and SAR remote sensing[J]. Remote Sensing for Natural Resources, 2021, 33(4): 10-18.
[13] LI Teya, SONG Yan, YU Xinli, ZHOU Yuanxiu. Monthly production estimation model for steel companies based on inversion of satellite thermal infrared temperature[J]. Remote Sensing for Natural Resources, 2021, 33(4): 121-129.
[14] LIU Bailu, GUAN Lei. An improved method for thermal stress detection of coral bleaching in the South China Sea[J]. Remote Sensing for Natural Resources, 2021, 33(4): 136-142.
[15] WU Fang, JIN Dingjian, ZHANG Zonggui, JI Xinyang, LI Tianqi, GAO Yu. A preliminary study on land-sea integrated topographic surveying based on CZMIL bathymetric technique[J]. Remote Sensing for Natural Resources, 2021, 33(4): 173-180.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech