Please wait a minute...
REMOTE SENSING FOR LAND & RESOURCES    2017, Vol. 29 Issue (1) : 21-28     DOI: 10.6046/gtzyyg.2017.01.04
Technology and Methodology |
Extraction of residential area from high resolution images based on wavelet texture and primitive merging
HU Hualong1, XUE Wu1,2,3, QIN Zhiyuan1
1. Institute of Geospatial Information, Information Engineering University, Zhengzhou 450001, China;
2. State Key Laboratory of Geo-information Engineering, Xi'an 710054, China;
3. Key Laboratory of Mine Spatial Information Technologies of NASG, Henan Polytechnic University, Jiaozuo 454003, China
Download: PDF(4270 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    

Due to the highly detailed information and noise in the high resolution panchromatic images, the results of traditional residential area extraction algorithms based on texture features are not satisfactory. To tackle this problem, the authors propose a method based on wavelet texture and primitive merging in this paper. For obtaining the initial primitives, the image was firstly segmented by fractal net evolution approach modified by the wavelet transform, and then the multi-scale wavelet texture features extraction method was directly applied to the irregular image primitives. Based on the artificially provided seed primitives, the algorithm merged the primitives with similar texture features and then applied morphological methods to the result of primitive merging. In the experiment, Mapping Satellite-1(TH-1) panchromatic images were used to validate the proposed method. The comparative analysis with other texture features-based methods shows that the proposed method could extract the street-block residential area from high resolution panchromatic images with a higher extraction accuracy and computational efficiency.

Keywords flood inundation area      spatial-temporal simulation      level set      remote sensing      Heilong River flood     
:  TP751.1  
Issue Date: 23 January 2017
E-mail this article
E-mail Alert
Articles by authors
ZHANG Lianchong
LI Guoqing
YU Wenyang
RAN Quan
Cite this article:   
ZHANG Lianchong,LI Guoqing,YU Wenyang, et al. Extraction of residential area from high resolution images based on wavelet texture and primitive merging[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(1): 21-28.
URL:     OR

[1] 于博,王力,牛铮.基于中性集对北川羌族自治县新城人工建设用地的识别[J].国土资源遥感,2015,27(1):106-112.doi:10.6046/gtzyyg.2015.01.17. Yu B,Wang L,Niu Z.Analysis of built-up land detection in new Beichuan County based on neutrosophic set[J].Remote Sensing for Land and Resources,2015,27(1):106-112.doi:10.6046/gtzyyg.2015.01.17.
[2] 易凤佳,李仁东,常变蓉,等.长株潭地区建设用地扩张遥感时空特征分析[J].国土资源遥感,2015,27(2):160-166.doi:10.6046/gtzyyg.2015.02.25. Yi F J,Li R D,Chang B R,et al.Spatial-temporal features of construction land expansion in Changzhutan(Changsha-Zhuzhou-Xiangtan) area based on remote sensing[J].Remote Sensing for Land and Resources,2015,27(2):160-166.doi:10.6046/gtzyyg.2015.02.25.
[3] 杨存建,周成虎.TM影像的居民地信息提取方法研究[J].遥感学报,2000,4(2):146-150. Yang C J,Zhou C H.Extracting residential areas on the TM imagery[J].Journal of Remote Sensing,2000,4(2):146-150.
[4] Zha Y,Gao J,Ni S.Use of normalized difference built-up index in automatically mapping urban areas from TM imagery[J].International Journal of Remote Sensing,2003,24(3):583-594.
[5] Xu H.A new index for delineating built-up land features in satellite imagery[J].International Journal of Remote Sensing,2008,29(14):4269-4276.
[6] Pesaresi M,Gerhardinger A,Kayitakire F.A robust built-up area presence index by anisotropic rotation-invariant textural measure[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2008,1(3):180-192.
[7] Zhong P,Wang R S.A multiple conditional random fields ensemble model for urban area detection in remote sensing optical images[J].IEEE Transactions on Geoscience and Remote Sensing,2007,45(12):3978-3988.
[8] 金飞,张占睦,芮杰,等.基于树型小波变换和尺度共生矩阵的居民地提取[J].海洋测绘,2009,29(6):48-51. Jin F,Zhang Z M,Rui J,et al.Residential area extraction based on tree-structure wavelet and scale-based concurrent matrix[J].Hydrographic Surveying and Charting,2009,29(6):48-51.
[9] Hu X Y,Shen J J,Shan J,et al.Local edge distributions for detection of salient structure textures and objects[J].IEEE Geoscience and Remote Sensing Letters,2013,10(3):466-470.
[10] Unsalan C,Boyer K L.Classifying land development in high-resolution panchromatic satellite images using straight-line statistics[J].IEEE Transactions on Geoscience and Remote Sensing,2004,42(4):907-919.
[11] 陶超,邹峥嵘,丁晓利.利用角点进行高分辨率遥感影像居民地检测方法[J].测绘学报,2014,43(2):164-169,192. Tao C,Zou Z R,Ding X L.Residential area detection from high-resolution remote sensing imagery using corner distribution[J].Acta Geodaetica et Cartographica Sinica,2014,43(2):164-169,192.
[12] Baatz M,Schäpe A.Multiresolution segmentation:An optimization approach for high quality multi-scale image segmentation[C]//Strobl J,Blaschke T,Griesebner G.Angewandte geographische infor-mationsverarbeitung XII:beiträge zum AGIT-symposium.Salzburg:Herbert Wichmann Verlag,2000:12-23.
[13] 曹建农,王平禄,董昱威.高分辨率遥感影像上居民地自动提取方法[J].武汉大学学报:信息科学版,2014,39(7):831-837. Cao J N,Wang P L,Dong Y W.Automatic extraction technique of residential areas in high resolution remote sensing image[J].Geomatics and Information Science of Wuhan University,2014,39(7):831-837.
[14] 黄昕.高分辨率遥感影像多尺度纹理、形状特征提取与面向对象分类研究[D].武汉:武汉大学,2009:60-65. Huang X.Multiscale Texture and Shape Feature Extraction and Object-Oriented Classification for Very High Resolution Remotely Sensed Imagery[D].Wuhan:Wuhan University,2009:60-65.
[15] Achanta R,Shaji A,Smith K,et al.SLIC superpixels compared to state-of-the-art superpixel methods[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2012,34(11):2274-2282.
[16] 刘彬,王朝英,侯志强.融合聚类和分级区域合并的彩色图像分割方法[J].计算机工程与应用,2011,47(30):202-205. Liu B,Wang Z Y,Hou Z Q.Color image segmentation algorithm using clustering and hierarchical region merge[J].Computer Engineering and Applications,2011,47(30):202-205.
[17] Tong H J,Maxwell T,Zhang Y,et al.A supervised and fuzzy-based approach to determine optimal multi-resolution image segmentation parameters[J].Photogrammetric Engineering & Remote Sensing,2012,78(10):1029-1044.
[18] Haris K,Efstratiadis S N,Maglaveras N,et al.Hybrid image segmentation using watersheds and fast region merging[J].IEEE Transactions on Image Processing,1998,7(12):1684-1699.
[19] 李向辉,陈一祥,王海斌,等.基于Gabor滤波和局部特征点密度的居民区提取[J].国土资源遥感,2015,27(3):59-64.doi:10.6046/gtzyyg.2015.03.11. Li X H,Chen Y X,Wang H B,et al.Urban area detection based on Gabor filtering and density of local feature points[J].Remote Sensing for Land and Resources,2015,27(3):59-64.doi:10.6046/gtzyyg.2015.03.11.

[1] LI Weiguang, HOU Meiting. A review of reconstruction methods for remote-sensing-based time series data of vegetation and some examples[J]. Remote Sensing for Natural Resources, 2022, 34(1): 1-9.
[2] DING Bo, LI Wei, HU Ke. Inversion of total suspended matter concentration in Maowei Sea and its estuary, Southwest China using contemporaneous optical data and GF SAR data[J]. Remote Sensing for Natural Resources, 2022, 34(1): 10-17.
[3] GAO Qi, WANG Yuzhen, FENG Chunhui, MA Ziqiang, LIU Weiyang, PENG Jie, JI Yanzhen. Remote sensing inversion of desert soil moisture based on improved spectral indices[J]. Remote Sensing for Natural Resources, 2022, 34(1): 142-150.
[4] ZHANG Qinrui, ZHAO Liangjun, LIN Guojun, WAN Honglin. Ecological environment assessment of three-river confluence in Yibin City using improved remote sensing ecological index[J]. Remote Sensing for Natural Resources, 2022, 34(1): 230-237.
[5] HE Peng, TONG Liqiang, GUO Zhaocheng, TU Jienan, WANG Genhou. A study on hidden risks of glacial lake outburst floods based on relief amplitude: A case study of eastern Shishapangma[J]. Remote Sensing for Natural Resources, 2022, 34(1): 257-264.
[6] LIU Wen, WANG Meng, SONG Ban, YU Tianbin, HUANG Xichao, JIANG Yu, SUN Yujiang. Surveys and chain structure study of potential hazards of ice avalanches based on optical remote sensing technology: A case study of southeast Tibet[J]. Remote Sensing for Natural Resources, 2022, 34(1): 265-276.
[7] WANG Qian, REN Guangli. Application of hyperspectral remote sensing data-based anomaly extraction in copper-gold prospecting in the Solake area in the Altyn metallogenic belt, Xinjiang[J]. Remote Sensing for Natural Resources, 2022, 34(1): 277-285.
[8] LYU Pin, XIONG Liyuan, XU Zhengqiang, ZHOU Xuecheng. FME-based method for attribute consistency checking of vector data of mines obtained from remote sensing monitoring[J]. Remote Sensing for Natural Resources, 2022, 34(1): 293-298.
[9] ZHANG Daming, ZHANG Xueyong, LI Lu, LIU Huayong. Remote sensing image segmentation based on Parzen window density estimation of super-pixels[J]. Remote Sensing for Natural Resources, 2022, 34(1): 53-60.
[10] XUE Bai, WANG Yizhe, LIU Shuhan, YUE Mingyu, WANG Yiying, ZHAO Shihu. Change detection of high-resolution remote sensing images based on Siamese network[J]. Remote Sensing for Natural Resources, 2022, 34(1): 61-66.
[11] SONG Renbo, ZHU Yuxin, GUO Renjie, ZHAO Pengfei, ZHAO Kexin, ZHU Jie, CHEN Ying. A method for 3D modeling of urban buildings based on multi-source data integration[J]. Remote Sensing for Natural Resources, 2022, 34(1): 93-105.
[12] YU Xinli, SONG Yan, YANG Miao, HUANG Lei, ZHANG Yanjie. Multi-model and multi-scale scene recognition of shipbuilding enterprises based on convolutional neural network with spatial constraints[J]. Remote Sensing for Natural Resources, 2021, 33(4): 72-81.
[13] LI Yikun, YANG Yang, YANG Shuwen, WANG Zihao. A change vector analysis in posterior probability space combined with fuzzy C-means clustering and a Bayesian network[J]. Remote Sensing for Natural Resources, 2021, 33(4): 82-88.
[14] AI Lu, SUN Shuyi, LI Shuguang, MA Hongzhang. Research progress on the cooperative inversion of soil moisture using optical and SAR remote sensing[J]. Remote Sensing for Natural Resources, 2021, 33(4): 10-18.
[15] LI Teya, SONG Yan, YU Xinli, ZHOU Yuanxiu. Monthly production estimation model for steel companies based on inversion of satellite thermal infrared temperature[J]. Remote Sensing for Natural Resources, 2021, 33(4): 121-129.
Full text



Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech