Please wait a minute...
 
Remote Sensing for Land & Resources    2020, Vol. 32 Issue (3) : 191-199     DOI: 10.6046/gtzyyg.2020.03.25
|
Spatio-temporal difference and correlation of urbanization with avian habitats in Dongting Lake area
LIU Hui(), QI Zengxiang(), HUANG Fuqiang
School of Architecture, University of South China, Hengyang 421001, China
Download: PDF(6218 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

The deterioration of habitats caused by urbanization is an important reason for biodiversity loss. Based on Landsat TM/OLI images, DEM, digital maps and local climatic data from 1995 to 2015, the authors constructed the image interpretation system of Dongting Lake area, which was based on CART acquisition rules. According to the LUCC data obtained, the authors analyzed the spatio-temporal difference and correction of urbanization and avian habitat in Dongting Lake area, with the support of the software such as ENVI, ArcGIS, and MaxEnt. The results show that the classification method based on the CART algorithm for acquisition rule gained a higher precision than the ordinary classification method. The construction land in lake area increased by 808.61 km 2 in 20 years, the high-intensity expansion area was spread from the urban center to the county-level city, and the expansion rate gradually decreased after 2005. In the past 20 years, the suitable habitat area of waterfowls has decreased by 195.19 km 2, and the overall suitability of this area has been declined. However, the situation has gradually improved since 2000 with the government’s efforts to rectify the environment. The results of polynomial fitting and spatial comparison indicate that rapid and disorderly expansion of township construction land has reduced the suitability of avian habitats in lake area, and that, to protect avian habitats, people should take effective measures to protect the ecological land around there and rationally plan and control the expansion of construction land in towns and village areas.

Keywords Dongting Lake      CART decision tree      urbanization      avian habitat      spatio-temporal difference     
:  X24  
  TP79  
Corresponding Authors: QI Zengxiang     E-mail: 1341438323@qq.com;qizengxiang@126.com
Issue Date: 09 October 2020
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Hui LIU
Zengxiang QI
Fuqiang HUANG
Cite this article:   
Hui LIU,Zengxiang QI,Fuqiang HUANG. Spatio-temporal difference and correlation of urbanization with avian habitats in Dongting Lake area[J]. Remote Sensing for Land & Resources, 2020, 32(3): 191-199.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2020.03.25     OR     https://www.gtzyyg.com/EN/Y2020/V32/I3/191
Fig.1  Location of study area
年份 传感器 行列号范围 获取时间
1995年 Landsat5 TM 123~125,39~41 9月23日,12月5日,11月17日,12月28日
2000年 Landsat5 TM 123~125,39~41 10月06日,11月07日,12月25日
2005年 Landsat5 TM 123~125,39~41 9月09日,11月18日,12月13日
2010年 Landsat5 TM 123~125,39~41 11月12日,12月05日,12月21日,11月10日
2015年 Landsat8 OLI_TIRS 123~125,39~41 10月25日,10月16日,12月26日
Tab.1  Information of Remote sensing image
年份 总体精度/% Kappa系数
1995年 96.46 0.95
2000年 94.01 0.92
2005年 96.73 0.94
2010年 96.01 0.94
2015年 97.29 0.96
Tab.2  Statistics on image classification accuracy
Fig.2  Statistics on construction land in Dongting Lake area from 1995 to 2015
年份 城区 乡镇 总体
1995—2000年 9.43 21.46 30.89
2000—2005年 15.34 52.23 67.57
2005—2010年 7.22 27.3 34.52
2010—2015年 5.83 22.9 28.74
Tab.3  Statistics on the speed of urban land expansion in Dongting Lake area from 1995 to 2015(km2·a-1)
Fig.3  Expand intensity of urban in Dongting Lake area from 1995 to 2015
Fig.4  Expand intensity of townships in Dongting Lake area from 1995 to 2015
保护等级 濒危程度 物种名 权重
国家Ⅰ级 极危 白鹤(Grus leucogeranus) 0.305 7
濒危 东方白鹤(Ciconia boyciana)、中华秋沙鸭(Mergus squamatus) 0.164 1
易危 白头鹤(Grus monacha) 0.087 7
低危 黑鹳(Ciconia nigra) 0.028 4
国家Ⅱ级 易危 白枕鹤(Grus vipio) 0.071 4
近危 小天鹅(Cygnus columbianus)、鸳鸯(Aix galericulata) 0.035 7
低危 灰鹤(Grus grus)、白额雁(Anser albifrons)、白琵鹭(Platalea leucorodia)、雀鹰(Accipiter nisus)、日本松雀鹰(Accipiter gularis)、松雀鹰(Accipiter virgatus) 0.017 9
Tab.4  Weight of avian
Fig.5  Spatial distribution of avian suitable habitat in Dongting Lake area from 1995 to 2015
年份 最适宜 适宜 较不适宜 不适宜
1995年 1 422.17 1 414.38 3 841.96 38 605.82
2000年 1 153.73 1 460.28 4 488.29 38 182.02
2005年 1 129.90 1 639.37 4 356.74 38 158.33
2010年 1 511.27 1 708.09 4 323.99 37 740.98
2015年 1 270.31 1 371.05 4 003.81 38 639.16
Tab.5  Statistics on suitable habitat area of avian in Dongting Lake area from 1995 to 2015(km2)
Fig.6  Changes of avian habitat suitability in Dongting Lake area from 1995 to 2015
Fig.7  Polynomial fitting of area change in each period
[1] 邹鹏飞. 基于RS和GIS的城镇化扩展时空特征及驱动力分析[D].北京:中国地质大学(北京),2016.
[1] Zou P F. Analysis of spatial and temporal characteristics and driving force of urbanization based on RS and GIS[D].Beijing:China University of Geosciences(Beijing), 2016.
[2] 魏辅文, 聂永刚, 苗海霞, 等. 生物多样性丧失机制研究进展[J]. 科学通报, 2014,59(6):430-437.
[2] Wei F W, Nie Y G, Miao H X, et al. Advancements of the researches on biodiversity loss mechanisms[J]. Chinese Science Bulletin, 2014,59(6):430-437.
[3] Venn,S, K J, Niemelä J. Urbanization effects on carabid diversity in boreal forests[J]. European Journal of Entomology, 2013,100(1):73-80.
doi: 10.14411/eje.2003.015 url: http://www.eje.cz/doi/10.14411/eje.2003.015.html
[4] Xiao L, Wang W, He X, et al. Urban-rural and temporal differences of woody plants and bird species in Harbin City,northeastern China[J]. Urban Forestry & Urban Greening, 2016,13(7):20-31.
[5] Perrier C, Campo A L D, Szulkin M, et al. Great tits and the city:Distribution of genomic diversity and gene-environment associations along an urbanization gradient[J]. Evolutionary Applications, 2018,11(5):593-613.
pmid: 29875805 url: https://www.ncbi.nlm.nih.gov/pubmed/29875805
[6] Jung K, Kalko E K V. Adaptability and vulnerability of high flying neotropical aerial insectivorous bats to urbanization[J]. Diversity & Distributions, 2015,17(2):262-274.
[7] Germaine S S, Wakeling B F. Lizard species distributions and habitat occupation along an urban gradient in Tucson,Arizona,USA[J]. Biological Conservation, 2001,97(2):229-237.
[8] Clucas B, Marzluff J M. A cross-continental look at the patterns of avian species diversity and composition across an urbanisation gradient[J]. Wildlife Research, 2015,42(7):554-562.
[9] La Sorte F A, Lepczyk C A, Aronson M F J, et al. The phylogenetic and functional diversity of regional breeding bird assemblages is reduced and constricted through urbanization[J]. Diversity and Distributions, 2018,24(7):928-938.
doi: 10.1111/ddi.2018.24.issue-7 url: http://doi.wiley.com/10.1111/ddi.2018.24.issue-7
[10] Lövei G L, Horváth R, Elek Z, et al. Diversity and assemblage filtering in ground-dwelling spiders (Araneae) along an urbanisation gradient in Denmark[J]. Urban Ecosystems, 2019,22(2):345-353.
doi: 10.1007/s11252-018-0819-x url: https://doi.org/10.1007/s11252-018-0819-x
[11] Wu Y H, Gu C B, Li W B, et al. The influence of urbanization on butterfly diversity in Hefei,Anhui Province[J]. Chinese Journal of Ecology, 2016,35(4):992-996.
url: http://www.cje.net.cn/CN/abstract/abstract7940.shtml
[12] 刘云珠, 史林鹭. 人为干扰下西洞庭湖湿地景观格局变化及冬季水鸟的响应[J]. 生物多样性, 2013,21(6):666-676.
doi: 10.3724/SP.J.1003.2013.11090 url: http://www.biodiversity-science.net/CN/abstract/abstract9829.shtml
[12] Liu Y Z, Shi L L. Disturbance-driven changes to landscape patterns and responses of waterbirds at west Dongting Lake[J]. Biodiversity Science, 2013,21(6):666-676.
doi: 10.3724/SP.J.1003.2013.11090 url: http://www.biodiversity-science.net/CN/abstract/abstract9829.shtml
[13] Vittorio M D, Ciaccio A, Grenci S, et al. Ecological modelling of the distribution of the lanner falcon Falco feldeggii in Sicily at two spatial scales[J]. Ardeola, 2015,62(1):81-94.
[14] 于沿泽, 吴新宇, 尹冬冬, 等. 基于MAXENT生态位模型对内蒙古根河地区驼鹿生境适宜性评价[J]. 林业科技, 2019,44(2):1-4.
[14] Yu Y Z, Wu X Y, Yin D D, et al. Suitability evaluation of moose habitat in Genhe area of Inner Mongolia based on MAXENT model[J]. Forestry Science & Technology, 2019,44(2):1-4.
[15] Yang F, He D H. Effects of habitat fragmentation on biodiversity[J]. Annual Review of Ecology Evolution & Systematics, 2003,34(2):487-515.
doi: 10.1146/annurev.ecolsys.34.011802.132419 url: http://www.annualreviews.org/doi/10.1146/annurev.ecolsys.34.011802.132419
[16] 贾慧聪, 潘东华, 张万昌. 洞庭湖区近30年土地利用/覆盖变化对湿地的影响分析[J]. 中国人口·资源与环境, 2014,24(s3):126-128.
[16] Jia H C, Pan D H, Zhang W C. Study on land use/cover change impact on wetlands of Dongting Lake area for nearly 30 years[J]. China Population,Resources and Environment, 2014,24(s3):126-128.
[17] 庄大昌. 洞庭湖湿地生态系统服务功能价值评估[J]. 经济地理, 2004,24(3):391-394,432.
[17] Zhuang D C. The evaluation of the ecosystem service value in Dongting Lake wetland[J].Economic Geograph 2004(3):391-394,432.
[18] 蒋卫国, 潘英姿, 侯鹏, 等. 洞庭湖区湿地生态系统健康综合评价[J]. 地理研究, 2009,28(6):1665-1672.
url: http://www.dlyj.ac.cn/CN/abstract/abstract8787.shtml
[18] Jiang W G, Pan Y Z, Hou P, et al. Assessment and analysis of wetland ecosystem health in Dongting Lake[J]. Geographical Research, 2009,28(6):1665-1672.
[19] 陈云, 戴锦芳, 李俊杰. 基于影像多种特征的CART决策树分类方法及其应用[J].地理与地理信息科学, 2008(2):33-36.
url: http://d.wanfangdata.com.cn/Periodical_dlxygtyj200802009.aspx
[19] Chen Y, Dai J F, Li J J. CART-based decision tree classifier using multi-feature of image and its application[J]. Geography and Geo-Information Science, 2008,24(2):33-36.
[20] 许仲林, 彭焕华, 彭守璋. 物种分布模型的发展及评价方法[J]. 生态学报, 2015,35(2):557-567.
[20] Xu Z L, Peng H H, Peng S Z. The development and evaluation of species distribution models[J]. Acta Ecologica Sinica, 2015,35(2):557-567.
[21] 汪松, 解焱. 中国物种红色名录(第一卷)[M]. 北京: 高等教育出版社, 2004.
[21] Wang S, Xie Y. China species red list (Vol.I)[M]. Beijing: Higher Education Press, 2004.
[22] 朱耿平, 刘国卿, 卜文俊, 等. 生态位模型的基本原理及其在生物多样性保护中的应用[J]. 生物多样性, 2013,21(1):90-98.
doi: 10.3724/SP.J.1003.2013.09106 url: http://www.biodiversity-science.net/CN/abstract/abstract9674.shtml
[22] Zhu G P, Liu G Q, Bu W J, et al. Ecological niche modeling and its applications in biodiversity conservation[J]. Biodiversity Science, 2013,21(1):90-98.
doi: 10.3724/SP.J.1003.2013.09106 url: http://www.biodiversity-science.net/CN/abstract/abstract9674.shtml
[23] 熊巧利, 何云玲, 邓福英, 等. 基于MaxEnt模型西南地区高山植被对气候变化的响应评估[J]. 生态学报, 2019,39(24):1-11.
[23] Xiong Q L, He Y L, Deng F Y, et al. Assessment of alpine mean response to climate change in Southwest China based on MaxEnt model[J]. Acta Ecologica Sinica, 2019,39(24):1-11.
[24] 李涛, 齐增湘, 王宽, 等. 1990—2013年来洞庭湖区鸟类生物多样性热点区时空动态及变动机理[J]. 长江流域资源与环境, 2017,26(11):1902-1911.
[24] Li T, Qi Z X, Wang K, et al. Spatio-temporal dynamic and mechanism of avian biodiversity hotpots in Dongting Lake region during 1990—2013[J]. Resources and Environment in the Yangtze Basin, 2017,26(11):1902-1911.
[1] MENG Dan, LIU Lingtong, GONG Huili, LI Xiaojuan, JIANG Bowu. Coupling and coordination relationships between urbanization and ecological environment along the Beijing-Hangzhou Grand Canal[J]. Remote Sensing for Natural Resources, 2021, 33(4): 162-172.
[2] WANG Xiaolong, YAN Haowen, ZHOU Liang, ZHANG Liming, DANG Xuewei. Using SVM classify Landsat image to analyze the spatial and temporal characteristics of main urban expansion analysis in Democratic People’s Republic of Korea[J]. Remote Sensing for Land & Resources, 2020, 32(4): 163-171.
[3] MUHADAISI Ariken, ZHANG Fei, LIU Kang, AYINUER Yushanjiang. Urban ecological environment evaluation based on Tiangong-2 and Landsat8 data[J]. Remote Sensing for Land & Resources, 2020, 32(4): 209-218.
[4] Jiaqi ZUO, Zegen WANG, Jinhu BIAN, Ainong LI, Guangbin LEI, Zhengjian ZHANG. A review of research on remote sensing for ground impervious surface percentage retrieval[J]. Remote Sensing for Land & Resources, 2019, 31(3): 20-28.
[5] JIN Pingbin, XU Pengfei. A study of urbanization progress and spatial pattern using DMSP/OLS nighttime light data:A case study of Hangzhou City[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(4): 205-213.
[6] YU Deqing, YU Shuchen, HE Qiuhua, LI Chang'an, WEI Chuanyi. Monitoring of Dongting Lake atrophy in the past 100 years by combining historical map and remote sensing technology[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(3): 116-122.
[7] SU Cen. Remote sensing monitoring mathematical model for the evolution of the Dongting Lake[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(1): 178-182.
[8] ZHANG Yazhou, XIE Xiaoping. Relationship between urbanization and ecological vulnerability in the Nansi Lake area based on RS and GIS[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(4): 151-156.
[9] YANG Bin, GU Xiu-mei, JIANG Xiao-peng. The Application of AHP and GIS to the Analysis of Urbanization Spatial Development:A Case Study of Zitong County, a Low Mountain Hilly Old Revolutionary Base Area[J]. REMOTE SENSING FOR LAND & RESOURCES, 2012, 24(4): 169-174.
[10] REN Jin-hua, WU Shao-hua, ZHOU Sheng-lu, LIN Chen. Advances in Remote Sensing Research on Urban Impervious Surface[J]. REMOTE SENSING FOR LAND & RESOURCES, 2012, 24(4): 8-15.
[11] XU Meng-jie, CHEN Li, LIU Huan-jin, WANG Hui. Pattern and Process of Urbanization in the Yangtze Delta Based on DMSP/OLS Data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2011, 23(3): 106-112.
[12] LI Zhi-Hua, GAO Zhi-Qiang, GAO Wei, SHI Run-He, LIU Chao-Shun. Researches on Changes of Urbanization of Shanghai and its Ecologic Environment Based on MODIS Time Series in the Last Decade[J]. REMOTE SENSING FOR LAND & RESOURCES, 2011, 23(2): 124-129.
[13] JIANG Duan-Wu, YU De-Qing, ZHANG Yuan-Ping, JIANG Feng. A Remote Sensing Analysis of Characteristics of Neotectonic Movement in Jianghan-Dongting Basin and Huarong Uplift[J]. REMOTE SENSING FOR LAND & RESOURCES, 2010, 22(s1): 118-123.
[14] JIANG Duan-Wu, HUANG Shu-Chun, ZHANG Yuan-Ping, YU De-Qing. A Discussion on the Evolution of the Dongting Lake Based on Geo-environmental Remote Sensing Investigation and Monitoring Data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2010, 22(s1): 124-129.
[15] Jia Tie-Fei, NI Shao-Chun, ZHENG Xin-You. DYNAMIC CHANGE OF LAND USE AND SPATIAL PROCESS
ANALYSIS OF THE RAPID URBANIZATION AREAS
[J]. REMOTE SENSING FOR LAND & RESOURCES, 2006, 18(1): 36-39.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech