Please wait a minute...
 
Remote Sensing for Land & Resources    2018, Vol. 30 Issue (3) : 224-229     DOI: 10.6046/gtzyyg.2018.03.30
|
Research on application of unmanned aerial vehicle technology to dynamic monitoring of reserves in the Shouyun iron mine, Beijing
Jie XIANG1,2, Jianping CHEN2(), Shi LI2, Zili LAI2, Haozhong HUANG2, Jing LIU2, Shuai XIE2
1. MNR Key Laboratory of Metallogeny and Mineral Assessment, Institute of Mineral Resources, CAGS, Beijing 100037, China
2. School of Earth Sciences and Resources, China University of Geosciences(Beijing), Beijing 100083, China;
Download: PDF(5676 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

An open challenge for the remote sensing community is to explore a fast, accurate and low-cost method to monitor the open-pit mining. For this purpose, the authors selected the Shouyun iron mine as the case study. Firstly, the authors implemented field campaigns and data acquisition of unmanned aerial vehicle(UAV) in August 2014 and October 2016. Secondly, the authors generated high-resolution of the digital surface model (DSM) and digital orthophoto map (DOM) by using UAV structure from motion (SfM) technology. Finally, the volumetric changes of reserves were calculated by using the algorithm of DSM of difference (DoD), and then multiplied by the average of ore-bearing rate, density of iron ore and ore grade to obtain the mined tonnage. The result shows that the UAV and SfM technology could be a fast and accurate solution for monitoring the reserves of open-pit mines. This study provides a new idea for dynamic monitoring of reserves and environment in open-pit mine.

Keywords UAV      SfM      open-pit mine’s reserves;      dynamic monitoring      Shouyun iron mine     
:  TP79  
Corresponding Authors: Jianping CHEN     E-mail: 3s@cugb.edu.cn
Issue Date: 10 September 2018
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jie XIANG
Jianping CHEN
Shi LI
Zili LAI
Haozhong HUANG
Jing LIU
Shuai XIE
Cite this article:   
Jie XIANG,Jianping CHEN,Shi LI, et al. Research on application of unmanned aerial vehicle technology to dynamic monitoring of reserves in the Shouyun iron mine, Beijing[J]. Remote Sensing for Land & Resources, 2018, 30(3): 224-229.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2018.03.30     OR     https://www.gtzyyg.com/EN/Y2018/V30/I3/224
Fig.1  Location of Shouyun iron mine in Miyun district, Beijing
型号 重量/g 空间分辨
率/ m
焦距 /mm 传感器尺
寸/mm
数据大小/
像素×像素
Sony
QX100
179 20.9 10.4~37.1 13.2 × 8.8 5 472 × 3 648
Tab.1  Parameters of camera equipped on UAV
Fig.2  Field surveys and data acquisition lines of UAV
Fig.3  Cloud point and DSM of two periods using UAV data
Fig.4  Results of DSM of difference by using the limit of detection method
Fig.5  Results of DSM of difference by using the converted probability method
方法 堆积/m3 开挖/m3 总体积变化/m3 储量变化/t
原始DoD 1 325 479 -14 633 968 -13 308 489 -1 916 422
最小检出限法(0.5 m) 1 264 146 -14 559 008 -13 294 862 -1 914 460
最小检出限法摒弃量 61 333 -74 960 -13 627 -1 962
转换概率法(95%) 1 262 525 -14 556 857 -13 294 332 -1 914 384
转换概率法摒弃量 62 954 -77 111 -14 157 -2 039
Tab.2  Comparison of results by different methods
[1] 李德仁, 李明 . 无人机遥感系统的研究进展与应用前景[J]. 武汉大学学报(信息科学版), 2014,39(5):505-513,540.
doi: 10.13203/j.whugis20140045 url: http://d.wanfangdata.com.cn/Periodical/whchkjdxxb201405001
[1] Li D R, Li M . Research advance and application prospect of unmanned aerial vehicle remote sensing system[J]. Geomatics and Information Science of Wuhan University, 2014,39(5):505-513,540.
[2] 胡勇, 张孝成, 马泽忠 , 等. 无人机遥感影像中农村房屋信息快速提取[J]. 国土资源遥感, 2016,28(3):96-101.doi: 10.6046/gtzyyg.2016.03.16.
doi: 10.6046/gtzyyg.2016.03.16 url: http://d.wanfangdata.com.cn/Periodical/gtzyyg201603016
[2] Hu Y, Zhang X C, Ma Z Z , et al. Rural residential area extraction from UAV remote sensing imagery[J]. Remote Sensing for Land and Resources, 2016,28(3):96-101.doi: 10.6046/gtzyyg.2016.03.16.
[3] 唐敏, 李永树, 李歆 , 等. 无人机影像局部增强方法及其在影像匹配中的应用[J]. 国土资源遥感, 2013,25(4):53-57.doi: 10.6046/gtzyyg.2013.04.09.
doi: 10.6046/gtzyyg.2013.04.09 url: 年度引用
[3] Tang M, Li Y S, Li X , et al. Local enhancement method and its applications to UAV image matching[J]. Remote Sensing for Land and Resources, 2013,25(4):53-57.doi: 10.6046/gtzyyg.2013.04.09.
[4] 尚红英, 陈建平, 李成尊 , 等. RS在矿山动态监测中的应用——以新疆稀有金属矿集区为例[J]. 遥感技术与应用, 2008,23(2):189-194.
doi: 10.11873/j.issn.1004-0323.2008.2.189 url: http://d.wanfangdata.com.cn/Periodical_ygjsyyy200802012.aspx
[4] Shang H Y, Chen J P, Li C Z , et al. Application of remote sensing in the dynamic inspection of the mining:An example in the rare metal ore concentration area of Xinjiang[J]. Remote Sensing Technology and Application, 2008,23(2):189-194.
[5] 杨青山, 范彬彬, 魏显龙 , 等. 无人机摄影测量技术在新疆矿山储量动态监测中的应用[J].测绘通报, 2015(5):91-94.
[5] Yang Q S, Fan B B, Wei X L , et al. Research on the application of unmanned aerial vehicle technology in Xinjiang mineral monitoring[J].Bulletin of Surveying and Mapping, 2015(5):91-94.
[6] 金鼎坚, 支晓栋, 王建超 , 等. 面向地质灾害调查的无人机遥感影像处理软件比较[J]. 国土资源遥感, 2016,28(1):183-189.doi: 10.6046/gtzyyg.2016.01.27.
doi: 10.6046/gtzyyg.2016.01.27
[6] Jin D J, Zhi X D, Wang J C , et al. Comparison of UAV remote sensing imagery processing software for geological disasters monitoring[J]. Remote Sensing for Land and Resources, 2016,28(1):183-189.doi: 10.6046/gtzyyg.2016.01.27.
[7] Chen J P, Li K, Chang K J , et al. Open-pit mining geomorphic feature characterisation[J]. International Journal of Applied Earth Observation and Geoinformation, 2015,42:76-86.
doi: 10.1016/j.jag.2015.05.001 url: http://linkinghub.elsevier.com/retrieve/pii/S0303243415001105
[8] Lane S N, Richard K S, Chandler J H . Developments in monitoring and modelling small-scale river bed topography[J]. Earth Surface Processes and Landforms, 1994,19(4):349-368.
doi: 10.1002/esp.3290190406 url: http://doi.wiley.com/10.1002/%28ISSN%291096-9837
[9] Wheaton J M, Brasington J, Darby S E , et al. Accounting for uncertainty in DEMs from repeat topographic surveys:Improved sediment budgets[J]. Earth Surface Processes and Landforms, 2010,35(2):136-156.
doi: 10.1002/esp.1886 url: http://www.cabdirect.org/abstracts/20103127886.html
[10] Brasington J, Langham J, Rumsby B . Methodological sensitivity of morphometric estimates of coarse fluvial sediment transport[J]. Geomorphology, 2003,53(3/4):299-316.
doi: 10.1016/S0169-555X(02)00320-3 url: http://linkinghub.elsevier.com/retrieve/pii/S0169555X02003203
[11] Lane S N, Westaway R M, Hicks D M . Estimation of erosion and deposition volumes in a large,gravel-bed, braided river using synoptic remote sensing[J]. Earth Surface Processes and Landforms, 2003,28(3):249-271.
doi: 10.1002/(ISSN)1096-9837 url: http://doi.wiley.com/10.1002/%28ISSN%291096-9837
[1] WU Fang, LI Yu, JIN Dingjian, LI Tianqi, GUO Hua, ZHANG Qijie. Application of 3D information extraction technology of ground obstacles in the flight trajectory planning of UAV airborne geophysical exploration[J]. Remote Sensing for Natural Resources, 2022, 34(1): 286-292.
[2] REN Chaofeng, PU Yuchi, ZHANG Fuqiang. A method for extracting match pairs of UAV images considering geospatial information[J]. Remote Sensing for Natural Resources, 2022, 34(1): 85-92.
[3] ZHAO Xiaowei, HUANG Yang, WANG Yongqiang, CHU Ding. Estimation of maize seedling number based on UAV multispectral data[J]. Remote Sensing for Natural Resources, 2022, 34(1): 106-114.
[4] ZANG Chuankai, SHEN Fang, YANG Zhengdong. Aquatic environmental monitoring of inland waters based on UAV hyperspectral remote sensing[J]. Remote Sensing for Natural Resources, 2021, 33(3): 45-53.
[5] LI Yang, YUAN Lin, ZHAO Zhiyuan, ZHANG Jinlei, WANG Xianye, ZHANG Liquan. Inversion of tidal flat topography based on unmanned aerial vehicle low-altitude remote sensing and field surveys[J]. Remote Sensing for Natural Resources, 2021, 33(3): 80-88.
[6] LIU Yongmei, FAN Hongjian, GE Xinghua, LIU Jianhong, WANG Lei. Estimation accuracy of fractional vegetation cover based on normalized difference vegetation index and UAV hyperspectral images[J]. Remote Sensing for Natural Resources, 2021, 33(3): 11-17.
[7] BAI Junlong, WANG Zhangqiong, YAN Haitao. A K-means clustering-guided threshold-based approach to classifying UAV remote sensed images[J]. Remote Sensing for Natural Resources, 2021, 33(3): 114-120.
[8] LONG Zehao, ZHANG Tianyuan, XU Wei, QIN Qiming. Development of farmland drought remote sensing dynamic monitoring system based on Android[J]. Remote Sensing for Land & Resources, 2021, 33(2): 256-261.
[9] HU Guoqing, CHEN Donghua, LIU Congfang, XIE Yimei, LIU Saisai, LI Hu. Dynamic monitoring of urban black-odor water bodies based on GF-2 image[J]. Remote Sensing for Land & Resources, 2021, 33(1): 30-37.
[10] XIONG Yujiu, ZHAO Shaohua, YAN Chunhua, QIU Gouyu, SUN Hua, WANG Yanlin, QIN Longjun. A comparative study of methods for monitoring and assessing urban green space resources at multiple scales[J]. Remote Sensing for Land & Resources, 2021, 33(1): 54-62.
[11] CAI Xiang, LI Qi, LUO Yan, QI Jiandong. Surface features extraction of mining area image based on object-oriented and deep-learning method[J]. Remote Sensing for Land & Resources, 2021, 33(1): 63-71.
[12] XIA Yan, HUANG Liang, CHEN Pengdi. Tobacco fine extraction from UAV image based on fuzzy-superpixel segmentation algorithm[J]. Remote Sensing for Land & Resources, 2021, 33(1): 115-122.
[13] WANG Wei, WANG Xinsheng, YAO Chan, JIN Tian, WU Jiayu, SU Wei. Estimation of wheat planting density using UAV image[J]. Remote Sensing for Land & Resources, 2020, 32(4): 111-119.
[14] QIN Qiming, CHEN Jin, ZHANG Yongguang, REN Huazhong, WU Zihua, ZHANG Chishan, WU Linsheng, LIU Jianli. A discussion on some frontier directions of quantitative remote sensing[J]. Remote Sensing for Land & Resources, 2020, 32(4): 8-15.
[15] CHEN Pengdi, HUANG Liang, XIA Yan, YU Xiaona, GAO Xiaxia. Detection and recognition of road traffic signs in UAV images based on Mask R-CNN[J]. Remote Sensing for Land & Resources, 2020, 32(4): 61-67.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech